Skip to main content

Targeting Bone in Myeloma

  • Chapter
  • First Online:

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 192))

Abstract

Myeloma bone disease (BD) not only impairs quality of life, but is also associated with impaired survival. Studies of the biology underlying BD support the notion that the increased osteoclastogenesis and suppressed osteoblastogenesis is both a consequence and a necessity for tumour growth and clonal expansion. Survival and expansion of the myeloma clone are dependent on its interactions with bone elements; thus, targeting these interactions should have anti-myeloma activities. Indeed, both experimental and clinical findings indicate that bone-targeted therapies, not only improve BD, but also create an inhospitable environment for myeloma cell growth and survival, favouring improved clinical outcome. This chapter summarizes recent progress in our understandings of the biology of myeloma BD, highlighting the role of osteoclasts and osteoblasts in this process and how they can be targeted therapeutically. Unravelling the mechanisms underlying myeloma–bone interactions will facilitate the development of novel therapeutic agents to treat BD, which as a consequence are likely to improve the clinical outcome of myeloma patients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdulkadyrov KM, Salogub GN, Khuazheva NK, Woolf R, Haltom E, Borgstein NG, Knight R, Renshaw G, Yang Y, Sherman ML (2009) ACE-011, a soluble activin receptor type Iia IgG-Fc fusion protein, increases hemoglobin (Hb) and improves bone lesions in multiple myeloma patients receiving myelosuppressive chemotherapy: preliminary analysis. Blood (ASH Meeting Abstracts) 114:1

    Google Scholar 

  • Abe M, Hiura K, Wilde J, Shioyasono A, Moriyama K, Hashimoto T, Kido S, Oshima T, Shibata H, Ozaki S, Inoue D, Matsumoto T (2004) Osteoclasts enhance myeloma cell growth and survival via cell–cell contact: a vicious cycle between bone destruction and myeloma expansion. Blood 104(8):2484–2491. doi:10.1182/blood-2003-11-38392003-11-3839

    Article  PubMed  CAS  Google Scholar 

  • Anderson G, Gries M, Kurihara N, Honjo T, Anderson J, Donnenberg V, Donnenberg A, Ghobrial I, Mapara MY, Stirling D, Roodman D, Lentzsch S (2006) Thalidomide derivative CC-4047 inhibits osteoclast formation by down-regulation of PU.1. Blood 107(8):3098–3105. doi:10.1182/blood-2005-08-3450

    Article  PubMed  CAS  Google Scholar 

  • Atkins GJ, Kostakis P, Pan B, Farrugia A, Gronthos S, Evdokiou A, Harrison K, Findlay DM, Zannettino AC (2003) RANKL expression is related to the differentiation state of human osteoblasts. J Bone Miner Res 18(6):1088–1098. doi:10.1359/jbmr.2003.18.6.1088

    Article  PubMed  CAS  Google Scholar 

  • Aviles A, Nambo MJ, Neri N, Castaneda C, Cleto S, Huerta-Guzman J (2007) Antitumor effect of zoledronic acid in previously untreated patients with multiple myeloma. Med Oncol 24(2):227–230

    Article  PubMed  CAS  Google Scholar 

  • Bartel TB, Haessler J, Brown TL, Shaughnessy JD Jr, van Rhee F, Anaissie E, Alpe T, Angtuaco E, Walker R, Epstein J, Crowley J, Barlogie B (2009) F18-fluorodeoxyglucose positron emission tomography in the context of other imaging techniques and prognostic factors in multiple myeloma. Blood 114(10):2068–2076. doi:10.1182/blood-2009-03-213280

    Article  PubMed  CAS  Google Scholar 

  • Bataille R, Chappard D, Alexandre C, Dessauw P, Sany J (1986) Importance of quantitative histology of bone changes in monoclonal gammopathy. Br J Cancer 53(6):805–810

    Article  PubMed  CAS  Google Scholar 

  • Bataille R, Chappard D, Marcelli C, Dessauw P, Sany J, Baldet P, Alexandre C (1989) Mechanisms of bone destruction in multiple myeloma: the importance of an unbalanced process in determining the severity of lytic bone disease. J Clin Oncol 7(12):1909–1914

    PubMed  CAS  Google Scholar 

  • Bataille R, Delmas PD, Chappard D, Sany J (1990a) Abnormal serum bone Gla protein levels in multiple myeloma. Crucial role of bone formation and prognostic implications. Cancer 66(1):167–172

    Article  PubMed  CAS  Google Scholar 

  • Bataille R, Chappard D, Marcelli C, Rossi JF, Dessauw P, Baldet P, Sany J, Alexandre C (1990b) Osteoblast stimulation in multiple myeloma lacking lytic bone lesions. Br J Haematol 76(4):484–487

    Article  PubMed  CAS  Google Scholar 

  • Bataille R, Chappard D, Marcelli C, Dessauw P, Baldet P, Sany J, Alexandre C (1991) Recruitment of new osteoblasts and osteoclasts is the earliest critical event in the pathogenesis of human multiple myeloma. J Clin Invest 88(1):62–66. doi:10.1172/JCI115305

    Article  PubMed  CAS  Google Scholar 

  • Baulch-Brown C, Molloy TJ, Yeh SL, Ma D, Spencer A (2007) Inhibitors of the mevalonate pathway as potential therapeutic agents in multiple myeloma. Leuk Res 31(3):341–352. doi:10.1016/j.leukres.2006.07.018

    Article  PubMed  CAS  Google Scholar 

  • Bellido T, Ali AA, Gubrij I, Plotkin LI, Fu Q, O’Brien CA, Manolagas SC, Jilka RL (2005) Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology 146(11):4577–4583. doi:10.1210/en.2005-0239

    Article  PubMed  CAS  Google Scholar 

  • Berenson JR, Lichtenstein A, Porter L, Dimopoulos MA, Bordoni R, George S, Lipton A, Keller A, Ballester O, Kovacs M, Blacklock H, Bell R, Simeone JF, Reitsma DJ, Heffernan M, Seaman J, Knight RD (1998) Long-term pamidronate treatment of advanced multiple myeloma patients reduces skeletal events. Myeloma Aredia Study Group. J Clin Oncol 16(2):593–602

    PubMed  CAS  Google Scholar 

  • Berenson J, Dimopoulos M, Chen YM (2006) Improved survival in patients with multiple myeloma and high BALP levels treated with zoledronic acid compared with pamidronate: univariate and multivariate models of hazard ratios. Blood (ASH Meeting Abstracts) 1

    Google Scholar 

  • Bergsagel PL, Kuehl WM (2003) Critical roles for immunoglobulin translocations and cyclin D dysregulation in multiple myeloma. Immunol Rev 194:96–104. doi:10.1182/blood-2005-01-0034

    Article  PubMed  CAS  Google Scholar 

  • Bergsagel PL, Kuehl WM, Zhan F, Sawyer J, Barlogie B, Shaughnessy J Jr (2005) Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood 106(1):296–303. doi:10.1182/blood-2005-01-0034

    Article  PubMed  CAS  Google Scholar 

  • Boissy P, Andersen TL, Lund T, Kupisiewicz K, Plesner T, Delaisse JM (2008) Pulse treatment with the proteasome inhibitor bortezomib inhibits osteoclast resorptive activity in clinically relevant conditions. Leuk Res 32(11):1661–1668. doi:10.1016/j.leukres.2008.02.019

    Article  PubMed  CAS  Google Scholar 

  • Breitkreutz I, Raab MS, Vallet S, Hideshima T, Raje N, Mitsiades C, Chauhan D, Okawa Y, Munshi NC, Richardson PG, Anderson KC (2008) Lenalidomide inhibits osteoclastogenesis, survival factors and bone-remodeling markers in multiple myeloma. Leukemia 22(10):1925–1932. doi:10.1038/leu.2008.174

    Article  PubMed  CAS  Google Scholar 

  • Chantry A, Heath D, Coulton L, Gallagher O, Evans H, Seehra J, Vanderkerken KI CP (2007) A soluble activin type II receptor prevents myeloma bone disease. Haematologica (Abstract) 92 (suppl2):1

    Google Scholar 

  • Colucci S, Brunetti G, Oranger A, Mori G, Sardone F, Liso V, Curci P, Miccolis RM, Rinaldi E, Specchia G, Passeri G, Zallone A, Rizzi R, Grano M (2010) Myeloma Cells Induce Osteoblast Suppression through Sclerostin Secretion. Blood (ASH Meeting Abstracts) 116:1

    Google Scholar 

  • Corso A, Ferretti E, Lunghi M, Zappasodi P, Mangiacavalli S, De Amici M, Rusconi C, Varettoni M, Lazzarino M (2005) Zoledronic acid down-regulates adhesion molecules of bone marrow stromal cells in multiple myeloma: a possible mechanism for its antitumor effect. Cancer 104(1):118–125. doi:10.1002/cncr.21104

    Article  PubMed  CAS  Google Scholar 

  • Davies FE, Dring AM, Li C, Rawstron AC, Shammas MA, O’Connor SM, Fenton JA, Hideshima T, Chauhan D, Tai IT, Robinson E, Auclair D, Rees K, Gonzalez D, Ashcroft AJ, Dasgupta R, Mitsiades C, Mitsiades N, Chen LB, Wong WH, Munshi NC, Morgan GJ, Anderson KC (2003) Insights into the multistep transformation of MGUS to myeloma using microarray expression analysis. Blood 102(13):4504–4511. doi:10.1182/blood-2003-01-0016

    Article  PubMed  CAS  Google Scholar 

  • De Matteo M, Brunetti AE, Maiorano E, Cafforio P, Dammacco F, Silvestris F (2010) Constitutive down-regulation of Osterix in osteoblasts from myeloma patients: in vitro effect of Bortezomib and Lenalidomide. Leuk Res 34(2):243–249. doi:10.1016/j.leukres.2009.07.017

    Article  PubMed  Google Scholar 

  • De Vos J, Couderc G, Tarte K, Jourdan M, Requirand G, Delteil MC, Rossi JF, Mechti N, Klein B (2001) Identifying intercellular signaling genes expressed in malignant plasma cells by using complementary DNA arrays. Blood 98(3):771–780

    Article  PubMed  Google Scholar 

  • Delforge M, Terpos E, Richardson PG, Shpilberg O, Khuageva NK, Schlag R, Dimopoulos MA, Kropff M, Spicka I, Petrucci MT, Samoilova OS, Mateos MV, Magen-Nativ H, Goldschmidt H, Esseltine DL, Ricci DS, Liu K, Deraedt W, Cakana A, van de Velde H, San Miguel JF (2011) Fewer bone disease events, improvement in bone remodeling, and evidence of bone healing with bortezomib plus melphalan-prednisone vs. melphalan-prednisone in the phase III VISTA trial in multiple myeloma. Eur J Haematol. doi:10.1111/j.1600-0609.2011.01599.x

  • Dezorella N, Pevsner-Fischer M, Deutsch V, Kay S, Baron S, Stern R, Tavor S, Nagler A, Naparstek E, Zipori D, Katz BZ (2009) Mesenchymal stromal cells revert multiple myeloma cells to less differentiated phenotype by the combined activities of adhesive interactions and interleukin-6. Exp Cell Res 315(11):1904–1913. doi:10.1016/j.yexcr.2009.03.016

    Article  PubMed  CAS  Google Scholar 

  • Durie BG, Salmon SE (1975) A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer 36(3):842–854

    Article  PubMed  CAS  Google Scholar 

  • Evans CE, Galasko CS, Ward C (1989) Does myeloma secrete an osteoblast inhibiting factor? J Bone Joint Surg Br 71(2):288–290

    PubMed  CAS  Google Scholar 

  • Fizazi K, Lipton A, Mariette X, Body JJ, Rahim Y, Gralow JR, Gao G, Wu L, Sohn W, Jun S (2009) Randomized phase II trial of denosumab in patients with bone metastases from prostate cancer, breast cancer, or other neoplasms after intravenous bisphosphonates. J Clin Oncol 27(10):1564–1571. doi:10.1200/JCO.2008.19.2146

    Article  PubMed  CAS  Google Scholar 

  • Fulciniti M, Tassone P, Hideshima T, Vallet S, Nanjappa P, Ettenberg SA, Shen Z, Patel N, Tai YT, Chauhan D, Mitsiades C, Prabhala R, Raje N, Anderson KC, Stover DR, Munshi NC (2009) Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood 114(2):371–379. doi:10.1182/blood-2008-11-191577

    Article  PubMed  CAS  Google Scholar 

  • Giuliani N, Morandi F, Tagliaferri S, Lazzaretti M, Bonomini S, Crugnola M, Mancini C, Martella E, Ferrari L, Tabilio A, Rizzoli V (2007a) The proteasome inhibitor bortezomib affects osteoblast differentiation in vitro and in vivo in multiple myeloma patients. Blood 110(1):334–338. doi:10.1182/blood-2006-11-059188

    Article  PubMed  CAS  Google Scholar 

  • Giuliani N, Morandi F, Tagliaferri S, Lazzaretti M, Donofrio G, Bonomini S, Sala R, Mangoni M, Rizzoli V (2007b) Production of Wnt inhibitors by myeloma cells: potential effects on canonical Wnt pathway in the bone microenvironment. Cancer Res 67(16):7665–7674. doi:10.1158/0008-5472.CAN-06-4666

    Article  PubMed  CAS  Google Scholar 

  • Glass DA 2nd, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers H, Taketo MM, Long F, McMahon AP, Lang RA, Karsenty G (2005) Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 8(5):751–764. doi:10.1016/j.devcel.2005.02.017

    Article  PubMed  CAS  Google Scholar 

  • Guenther A, Gordon S, Tiemann M, Burger R, Bakker F, Green JR, Baum W, Roelofs AJ, Rogers MJ, Gramatzki M (2010) The bisphosphonate zoledronic acid has antimyeloma activity in vivo by inhibition of protein prenylation. Int J Cancer 126(1):239–246. doi:10.1002/ijc.24758

    Article  PubMed  CAS  Google Scholar 

  • Gunn WG, Conley A, Deininger L, Olson SD, Prockop DJ, Gregory CA (2006) A crosstalk between myeloma cells and marrow stromal cells stimulates production of DKK1 and interleukin-6: a potential role in the development of lytic bone disease and tumor progression in multiple myeloma. Stem Cells 24(4):986–991. doi:10.1634/stemcells.2005-0220

    Article  PubMed  CAS  Google Scholar 

  • Gunn WG, Krause U, Lee N, Gregory CA (2011) Pharmaceutical inhibition of glycogen synthetase kinase-3beta reduces multiple myeloma-induced bone disease in a novel murine plasmacytoma xenograft model. Blood 117(5):1641–1651. doi:10.1182/blood-2010-09-308171

    Article  PubMed  CAS  Google Scholar 

  • Guo J, Liu M, Yang D, Bouxsein ML, Saito H, Galvin RJ, Kuhstoss SA, Thomas CC, Schipani E, Baron R, Bringhurst FR, Kronenberg HM (2010) Suppression of Wnt signaling by Dkk1 attenuates PTH-mediated stromal cell response and new bone formation. Cell Metab 11(2):161–171. doi:10.1016/j.cmet.2009.12.007

    Article  PubMed  CAS  Google Scholar 

  • Haaber J, Abildgaard N, Knudsen LM, Dahl IM, Lodahl M, Thomassen M, Kerndrup GB, Rasmussen T (2008) Myeloma cell expression of 10 candidate genes for osteolytic bone disease. Only overexpression of DKK1 correlates with clinical bone involvement at diagnosis. Br J Haematol 140(1):25–35. doi:10.1111/j.1365-2141.2007.06871.x

    PubMed  CAS  Google Scholar 

  • Han JH, Choi SJ, Kurihara N, Koide M, Oba Y, Roodman GD (2001) Macrophage inflammatory protein-1alpha is an osteoclastogenic factor in myeloma that is independent of receptor activator of nuclear factor kappaB ligand. Blood 97(11):3349–3353

    Article  PubMed  CAS  Google Scholar 

  • Heider U, Kaiser M, Muller C, Jakob C, Zavrski I, Schulz CO, Fleissner C, Hecht M, Sezer O (2006) Bortezomib increases osteoblast activity in myeloma patients irrespective of response to treatment. Eur J Haematol 77(3):233–238. doi:10.1111/j.1600-0609.2006.00692.x

    Article  PubMed  CAS  Google Scholar 

  • Henry DH, Costa L, Goldwasser F, Hirsh V, Hungria V, Prausova J, Scagliotti GV, Sleeboom H, Spencer A, Vadhan-Raj S, von Moos R, Willenbacher W, Woll PJ, Wang J, Jiang Q, Jun S, Dansey R, Yeh H (2011) Randomized, double-blind study of denosumab versus zoledronic Acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol 29(9):1125–1132. doi:10.1200/JCO.2010.31.3304

    Article  PubMed  CAS  Google Scholar 

  • Hurt EM, Wiestner A, Rosenwald A, Shaffer AL, Campo E, Grogan T, Bergsagel PL, Kuehl WM, Staudt LM (2004) Overexpression of c-maf is a frequent oncogenic event in multiple myeloma that promotes proliferation and pathological interactions with bone marrow stroma. Cancer Cell 5(2):191–199. doi:10.1016/S1535-6108(04)00019-4

    Article  PubMed  CAS  Google Scholar 

  • Jakob C, Sterz J, Liebisch P, Mieth M, Rademacher J, Goerke A, Heider U, Fleissner C, Kaiser M, von Metzler I, Muller C, Sezer O (2008) Incorporation of the bone marker carboxy-terminal telopeptide of type-1 collagen improves prognostic information of the International Staging System in newly diagnosed symptomatic multiple myeloma. Leukemia 22(9):1767–1772. doi:10.1038/leu.2008.159

    Article  PubMed  CAS  Google Scholar 

  • Karsenty G (2008) Transcriptional control of skeletogenesis. Annu Rev Genomics Hum Genet 9:183–196. doi:10.1146/annurev.genom.9.081307.164437

    Article  PubMed  CAS  Google Scholar 

  • Keller H, Kneissel M (2005) SOST is a target gene for PTH in bone. Bone 37(2):148–158. doi:10.1016/j.bone.2005.03.018

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni NH, Halladay DL, Miles RR, Gilbert LM, Frolik CA, Galvin RJ, Martin TJ, Gillespie MT, Onyia JE (2005) Effects of parathyroid hormone on Wnt signaling pathway in bone. J Cell Biochem 95(6):1178–1190. doi:10.1002/jcb.20506

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni NH, Onyia JE, Zeng Q, Tian X, Liu M, Halladay DL, Frolik CA, Engler T, Wei T, Kriauciunas A, Martin TJ, Sato M, Bryant HU, Ma YL (2006) Orally bioavailable GSK-3alpha/beta dual inhibitor increases markers of cellular differentiation in vitro and bone mass in vivo. J Bone Miner Res 21(6):910–920. doi:10.1359/jbmr.060316

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni NH, Wei T, Kumar A, Dow ER, Stewart TR, Shou J, N’Cho M, Sterchi DL, Gitter BD, Higgs RE, Halladay DL, Engler TA, Martin TJ, Bryant HU, Ma YL, Onyia JE (2007) Changes in osteoblast, chondrocyte, and adipocyte lineages mediate the bone anabolic actions of PTH and small molecule GSK-3 inhibitor. J Cell Biochem 102(6):1504–1518. doi:10.1002/jcb.21374

    Article  PubMed  CAS  Google Scholar 

  • Kyle RA, Yee GC, Somerfield MR, Flynn PJ, Halabi S, Jagannath S, Orlowski RZ, Roodman DG, Twilde P, Anderson K (2007) American Society of Clinical Oncology 2007 clinical practice guideline update on the role of bisphosphonates in multiple myeloma. J Clin Oncol 25(17):2464–2472. doi:10.1200/JCO.2007.12.1269

    Article  PubMed  CAS  Google Scholar 

  • Lentzsch S, Gries M, Janz M, Bargou R, Dorken B, Mapara MY (2003) Macrophage inflammatory protein 1-alpha (MIP-1 alpha) triggers migration and signaling cascades mediating survival and proliferation in multiple myeloma (MM) cells. Blood 101(9):3568–3573. doi:10.1182/blood-2002-08-2383

    Article  PubMed  CAS  Google Scholar 

  • Li X, Pennisi A, Yaccoby S (2008) Role of decorin in the antimyeloma effects of osteoblasts. Blood 112(1):159–168. doi:10.1182/blood-2007-11-124164

    Article  PubMed  CAS  Google Scholar 

  • Li X, Ominsky MS, Warmington KS, Morony S, Gong J, Cao J, Gao Y, Shalhoub V, Tipton B, Haldankar R, Chen Q, Winters A, Boone T, Geng Z, Niu QT, Ke HZ, Kostenuik PJ, Simonet WS, Lacey DL, Paszty C (2009) Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res 24(4):578–588. doi:10.1359/jbmr.081206

    Article  PubMed  CAS  Google Scholar 

  • Lotinun S, Pearsall RS, Davies MV, Marvell TH, Monnell TE, Ucran J, Fajardo RJ, Kumar R, Underwood KW, Seehra J, Bouxsein ML, Baron R (2010) A soluble activin receptor Type IIA fusion protein (ACE-011) increases bone mass via a dual anabolic-antiresorptive effect in Cynomolgus monkeys. Bone 46(4):1082–1088. doi:10.1016/j.bone.2010.01.370

    Article  PubMed  CAS  Google Scholar 

  • McCloskey EV, Dunn JA, Kanis JA, MacLennan IC, Drayson MT (2001) Long-term follow-up of a prospective, double-blind, placebo-controlled randomized trial of clodronate in multiple myeloma. Br J Haematol 113(4):1035–1043. doi:10.1046/j.1365-2141.2001.02851.x

    Article  PubMed  CAS  Google Scholar 

  • Melton LJ 3rd, Kyle RA, Achenbach SJ, Oberg AL, Rajkumar SV (2005) Fracture risk with multiple myeloma: a population-based study. J Bone Miner Res 20(3):487–493. doi:10.1359/JBMR.041131

    Article  PubMed  Google Scholar 

  • Mitsiades CS, McMillin DW, Klippel S, Hideshima T, Chauhan D, Richardson PG, Munshi NC, Anderson KC (2007) The role of the bone marrow microenvironment in the pathophysiology of myeloma and its significance in the development of more effective therapies. Hematol Oncol Clin North Am 21(6):1007–1034. doi:10.1016/j.hoc.2007.08.007 vii-viii

    Article  PubMed  Google Scholar 

  • Morgan GJ (2011) Can bisphosphonates improve outcomes in patients with newly diagnosed multiple myeloma? Crit Rev Oncol Hematol 77(Suppl 1):S24–30. doi:10.1016/S1040-8428(11)70005-1

    Article  PubMed  Google Scholar 

  • Morgan GJ, Davies FE, Gregory WM, Cocks K, Bell SE, Szubert AJ, Navarro-Coy N, Drayson MT, Owen RG, Feyler S, Ashcroft AJ, Ross F, Byrne J, Roddie H, Rudin C, Cook G, Jackson GH, Child JA (2010) First-line treatment with zoledronic acid as compared with clodronic acid in multiple myeloma (MRC Myeloma IX): a randomised controlled trial. Lancet 376(9757):1989–1999. doi:10.1016/S0140-6736(10)62051-X

    Article  PubMed  CAS  Google Scholar 

  • Moschetta M, Di Pietro G, Ria R, Gnoni A, Mangialardi G, Guarini A, Ditonno P, Musto P, D’Auria F, Ricciardi MR, Dammacco F, Ribatti D, Vacca A (2010) Bortezomib and zoledronic acid on angiogenic and vasculogenic activities of bone marrow macrophages in patients with multiple myeloma. Eur J Cancer 46(2):420–429. doi:10.1016/j.ejca.2009.10.019

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee S, Raje N, Schoonmaker JA, Liu JC, Hideshima T, Wein MN, Jones DC, Vallet S, Bouxsein ML, Pozzi S, Chhetri S, Seo YD, Aronson JP, Patel C, Fulciniti M, Purton LE, Glimcher LH, Lian JB, Stein G, Anderson KC, Scadden DT (2008) Pharmacologic targeting of a stem/progenitor population in vivo is associated with enhanced bone regeneration in mice. J Clin Invest 118(2):491–504. doi:10.1172/JCI33102

    PubMed  CAS  Google Scholar 

  • Neri P, Kumar S, Fulciniti MT, Vallet S, Chhetri S, Mukherjee S, Tai Y, Chauhan D, Tassone P, Venuta S, Munshi NC, Hideshima T, Anderson KC, Raje N (2007) Neutralizing B-cell activating factor antibody improves survival and inhibits osteoclastogenesis in a severe combined immunodeficient human multiple myeloma model. Clin Cancer Res 13(19):5903–5909. doi:10.1158/1078-0432.CCR-07-0753

    Article  PubMed  CAS  Google Scholar 

  • Pennisi A, Ling W, Li X, Khan S, Wang Y, Barlogie B, Shaughnessy JD Jr, Yaccoby S (2010) Consequences of daily administered parathyroid hormone on myeloma growth, bone disease, and molecular profiling of whole myelomatous bone. PLoS One 5(12):e15233. doi:10.1371/journal.pone.0015233

    Article  PubMed  CAS  Google Scholar 

  • Qiang YW, Chen Y, Stephens O, Brown N, Chen B, Epstein J, Barlogie B, Shaughnessy JD Jr (2008) Myeloma-derived Dickkopf-1 disrupts Wnt-regulated osteoprotegerin and RANKL production by osteoblasts: a potential mechanism underlying osteolytic bone lesions in multiple myeloma. Blood 112(1):196–207. doi:10.1182/blood-2008-01-132134

    Article  PubMed  CAS  Google Scholar 

  • Qin L, Qiu P, Wang L, Li X, Swarthout JT, Soteropoulos P, Tolias P, Partridge NC (2003) Gene expression profiles and transcription factors involved in parathyroid hormone signaling in osteoblasts revealed by microarray and bioinformatics. J Biol Chem 278(22):19723–19731. doi:10.1074/jbc.M212226200M212226200

    Article  PubMed  CAS  Google Scholar 

  • Raje N, Roodman GD (2011) Advances in the biology and treatment of bone disease in multiple myeloma. Clin Cancer Res 17(6):1278–1286. doi:10.1158/1078-0432.CCR-10-1804

    Article  PubMed  CAS  Google Scholar 

  • Robbiani DF, Chesi M, Bergsagel PL (2004) Bone lesions in molecular subtypes of multiple myeloma. N Engl J Med 351(2):197–198. doi:10.1056/NEJM200407083510223351/2/197

    Article  PubMed  CAS  Google Scholar 

  • Roodman GD (2004) Mechanisms of bone metastasis. N Engl J Med 350(16):1655–1664. doi:10.1056/NEJMra030831350/16/1655

    Article  PubMed  CAS  Google Scholar 

  • Rosen LS, Gordon D, Kaminski M, Howell A, Belch A, Mackey J, Apffelstaedt J, Hussein M, Coleman RE, Reitsma DJ, Seaman JJ, Chen BL, Ambros Y (2001) Zoledronic acid versus pamidronate in the treatment of skeletal metastases in patients with breast cancer or osteolytic lesions of multiple myeloma: a phase III, double-blind, comparative trial. Cancer J 7(5):377–387

    PubMed  CAS  Google Scholar 

  • Schmidmaier R, Simsek M, Baumann P, Emmerich B, Meinhardt G (2006) Synergistic antimyeloma effects of zoledronate and simvastatin. Anticancer Drugs 17(6):621–629. doi:10.1097/01.cad.0000215058.85813.02

    Article  PubMed  CAS  Google Scholar 

  • Shaugnessy J, Zhan F, Kordsmeier B, Randolph C, McCastlain K, Barlogie B (2002) Gene expression profiling (GEP) after short term in vivo treatment identifies potential mechanisms of action of current drugs used to treat multiple myeloma. Blood (ASH Meeting Abstracts) 100:1

    Google Scholar 

  • Shimazaki C, Uchida R, Nakano S, Namura K, Fuchida SI, Okano A, Okamoto M, Inaba T (2005) High serum bone-specific alkaline phosphatase level after bortezomib-combined therapy in refractory multiple myeloma: possible role of bortezomib on osteoblast differentiation. Leukemia 19(6):1102–1103. doi:10.1038/sj.leu.2403758

    Article  PubMed  CAS  Google Scholar 

  • Shipman CM, Rogers MJ, Apperley JF, Russell RG, Croucher PI (1997) Bisphosphonates induce apoptosis in human myeloma cell lines: a novel anti-tumour activity. Br J Haematol 98(3):665–672

    Article  PubMed  CAS  Google Scholar 

  • Spencer GJ, Utting JC, Etheridge SL, Arnett TR, Genever PG (2006) Wnt signalling in osteoblasts regulates expression of the receptor activator of NFkappaB ligand and inhibits osteoclastogenesis in vitro. J Cell Sci 119(Pt 7):1283–1296. doi:10.1242/jcs.02883

    Article  PubMed  CAS  Google Scholar 

  • Tai YT, Li XF, Breitkreutz I, Song W, Neri P, Catley L, Podar K, Hideshima T, Chauhan D, Raje N, Schlossman R, Richardson P, Munshi NCAnderson KC (2006) Role of B-cell-activating factor in adhesion and growth of human multiple myeloma cells in the bone marrow microenvironment. Cancer Res 66(13):6675–6682. doi:10.1158/0008-5472.CAN-06-0190

    Article  PubMed  CAS  Google Scholar 

  • Tassone P, Forciniti S, Galea E, Morrone G, Turco MC, Martinelli V, Tagliaferri P, Venuta S (2000) Growth inhibition and synergistic induction of apoptosis by zoledronate and dexamethasone in human myeloma cell lines. Leukemia 14(5):841–844

    Article  PubMed  CAS  Google Scholar 

  • Terpos E, Heath DJ, Rahemtulla A, Zervas K, Chantry A, Anagnostopoulos A, Pouli A, Katodritou E, Verrou E, Vervessou EC, Dimopoulos MA, Croucher PI (2006) Bortezomib reduces serum dickkopf-1 and receptor activator of nuclear factor-kappaB ligand concentrations and normalises indices of bone remodelling in patients with relapsed multiple myeloma. Br J Haematol 135(5):688–692. doi:10.1111/j.1365-2141.2006.06356.x

    Article  PubMed  CAS  Google Scholar 

  • Terpos E, Dimopoulos MA, Sezer O (2007) The effect of novel anti-myeloma agents on bone metabolism of patients with multiple myeloma. Leukemia 21(9):1875–1884. doi:10.1038/sj.leu.2404843

    Article  PubMed  CAS  Google Scholar 

  • Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, Shaughnessy JD Jr (2003) The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 349(26):2483–2494. doi:10.1056/NEJMoa030847

    Article  PubMed  CAS  Google Scholar 

  • Ural AU, Yilmaz MI, Avcu F, Pekel A, Zerman M, Nevruz O, Sengul A, Yalcin A (2003) The bisphosphonate zoledronic acid induces cytotoxicity in human myeloma cell lines with enhancing effects of dexamethasone and thalidomide. Int J Hematol 78(5):443–449

    Article  PubMed  CAS  Google Scholar 

  • Uy GL, Trivedi R, Peles S, Fisher NM, Zhang QJ, Tomasson MH, DiPersio JF, Vij R (2007) Bortezomib inhibits osteoclast activity in patients with multiple myeloma. Clin Lymphoma Myeloma 7(9):587–589

    Article  PubMed  CAS  Google Scholar 

  • Vallet S, Raje N, Ishitsuka K, Hideshima T, Podar K, Chhetri S, Pozzi S, Breitkreutz I, Kiziltepe T, Yasui H, Ocio EM, Shiraishi N, Jin J, Okawa Y, Ikeda H, Mukherjee S, Vaghela N, Cirstea D, Ladetto M, Boccadoro M, Anderson KC (2007) MLN3897, a novel CCR1 inhibitor, impairs osteoclastogenesis and inhibits the interaction of multiple myeloma cells and osteoclasts. Blood 110(10):3744–3752. doi:10.1182/blood-2007-05-093294

    Article  PubMed  CAS  Google Scholar 

  • Vallet S, Mukherjee S, Vaghela N, Hideshima T, Fulciniti M, Pozzi S, Santo L, Cirstea D, Patel K, Sohani AR, Guimaraes A, Xie W, Chauhan D, Schoonmaker JA, Attar E, Churchill M, Weller E, Munshi N, Seehra JS, Weissleder R, Anderson KC, Scadden DT, Raje N (2010) Activin A promotes multiple myeloma-induced osteolysis and is a promising target for myeloma bone disease. Proc Natl Acad Sci U S A 107(11):5124–5129. doi:10.1073/pnas.0911929107

    Article  PubMed  CAS  Google Scholar 

  • Vallet S, Pozzi S, Patel K, Vaghela N, Fulciniti MT, Veiby P, Hideshima T, Santo L, Cirstea D, Scadden DT, Anderson KC, Raje N (2011) A novel role for CCL3 (MIP-1alpha) in myeloma-induced bone disease via osteocalcin downregulation and inhibition of osteoblast function. Leukemia. doi:10.1038/leu.2011.43

  • Vij R, Horvath N, Spencer A, Taylor K, Vadhan-Raj S, Vescio R, Smith J, Qian Y, Yeh H, Jun S (2009) An open-label, phase 2 trial of denosumab in the treatment of relapsed or plateau-phase multiple myeloma. Am J Hematol 84(10):650–656. doi:10.1002/ajh.21509

    Article  PubMed  CAS  Google Scholar 

  • von Metzler I, Krebbel H, Hecht M, Manz RA, Fleissner C, Mieth M, Kaiser M, Jakob C, Sterz J, Kleeberg L, Heider U, Sezer O (2007) Bortezomib inhibits human osteoclastogenesis. Leukemia 21(9):2025–2034. doi:10.1038/sj.leu.2404806

    Article  Google Scholar 

  • Walker R, Barlogie B, Haessler J, Tricot G, Anaissie E, Shaughnessy JD Jr, Epstein J, van Hemert R, Erdem E, Hoering A, Crowley J, Ferris E, Hollmig K, van Rhee F, Zangari M, Pineda-Roman M, Mohiuddin A, Yaccoby S, Sawyer J, Angtuaco EJ (2007) Magnetic resonance imaging in multiple myeloma: diagnostic and clinical implications. J Clin Oncol 25(9):1121–1128. doi:10.1200/JCO.2006.08.5803

    Article  PubMed  Google Scholar 

  • Westendorf JJ, Kahler RA, Schroeder TM (2004) Wnt signaling in osteoblasts and bone diseases. Gene 341:19–39. doi:10.1016/j.gene.2004.06.044

    Article  PubMed  CAS  Google Scholar 

  • Wu P, Walker BA, Brewer D, Gregory WM, Ashcroft J, Ross FM, Jackson GH, Child AJ, Davies FE, Morgan GJ (2011) A gene expression-based predictor for myeloma patients at high risk of developing bone disease on bisphosphonate treatment. Clin Cancer Res 17(19):6347–6355

    Article  Google Scholar 

  • Yaccoby S (2005) The phenotypic plasticity of myeloma plasma cells as expressed by dedifferentiation into an immature, resilient, and apoptosis-resistant phenotype. Clin Cancer Res 11(21):7599–7606. doi:10.1158/1078-0432.CCR-05-0523

    Article  PubMed  CAS  Google Scholar 

  • Yaccoby S (2010) Advances in the understanding of myeloma bone disease and tumour growth. Br J Haematol 149(3):311–321. doi:10.1111/j.1365-2141.2010.08141.x

    Article  PubMed  CAS  Google Scholar 

  • Yaccoby S, Wezeman MJ, Henderson A, Cottler-Fox M, Yi Q, Barlogie B, Epstein J (2004) Cancer and the microenvironment: myeloma-osteoclast interactions as a model. Cancer Res 64(6):2016–2023

    Article  PubMed  CAS  Google Scholar 

  • Yaccoby S, Wezeman MJ, Zangari M, Walker R, Cottler-Fox M, Gaddy D, Ling W, Saha R, Barlogie B, Tricot G, Epstein J (2006) Inhibitory effects of osteoblasts and increased bone formation on myeloma in novel culture systems and a myelomatous mouse model. Haematologica 91(2):192–199

    PubMed  CAS  Google Scholar 

  • Yaccoby S, Ling W, Zhan F, Walker R, Barlogie B, Shaughnessy JD Jr (2007) Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood 109(5):2106–2111. doi:10.1182/blood-2006-09-047712

    Article  PubMed  CAS  Google Scholar 

  • Zangari M, Esseltine D, Lee CK, Barlogie B, Elice F, Burns MJ, Kang SH, Yaccoby S, Najarian K, Richardson P, Sonneveld P, Tricot G (2005) Response to bortezomib is associated to osteoblastic activation in patients with multiple myeloma. Br J Haematol 131(1):71–73. doi:10.1111/j.1365-2141.2005.05733.x

    Article  PubMed  CAS  Google Scholar 

  • Zavrski I, Krebbel H, Wildemann B, Heider U, Kaiser M, Possinger K, Sezer O (2005) Proteasome inhibitors abrogate osteoclast differentiation and osteoclast function. Biochem Biophys Res Commun 333(1):200–205. doi:10.1016/j.bbrc.2005.05.098

    Article  PubMed  CAS  Google Scholar 

  • Zhan F, Huang Y, Colla S, Stewart JP, Hanamura I, Gupta S, Epstein J, Yaccoby S, Sawyer J, Burington B, Anaissie E, Hollmig K, Pineda-Roman M, Tricot G, van Rhee F, Walker R, Zangari M, Crowley J, Barlogie B, Shaughnessy JD Jr (2006) The molecular classification of multiple myeloma. Blood 108(6):2020–2028. doi:10.1182/blood-2005-11-013458

    Article  PubMed  CAS  Google Scholar 

  • Zipori D (2010) The hemopoietic stem cell niche versus the microenvironment of the multiple myeloma-tumor initiating cell. Cancer Microenviron 3(1):15–28. doi:10.1007/s12307-009-0034-7

    Article  PubMed  CAS  Google Scholar 

  • Zwolak P, Manivel JC, Jasinski P, Kirstein MN, Dudek AZ, Fisher J, Cheng EY (2010) Cytotoxic effect of zoledronic acid-loaded bone cement on giant cell tumor, multiple myeloma, and renal cell carcinoma cell lines. J Bone Joint Surg Am 92(1):162–168. doi:10.2106/JBJS.H.01679

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to these organizations who have provided funding support to this article: Myeloma UK, Cancer Research UK, the Bud Flanagan Leukaemia Fund and the Biological Research Centre of the National Institute for Health Research at the Royal Marsden Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. J. Morgan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morgan, G.J., Wu, P. (2012). Targeting Bone in Myeloma. In: Joerger, M., Gnant, M. (eds) Prevention of Bone Metastases. Recent Results in Cancer Research, vol 192. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21892-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21892-7_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21891-0

  • Online ISBN: 978-3-642-21892-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics