Advertisement

Approximate Bicluster and Tricluster Boxes in the Analysis of Binary Data

  • Boris G. Mirkin
  • Andrey V. Kramarenko
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6743)

Abstract

A disjunctive model of box bicluster and tricluster analysis is considered. A least-squares locally-optimal one cluster method is proposed, oriented towards the analysis of binary data. The method involves a parameter, the scale shift, and is proven to lead to ”contrast” box bi- and tri-clusters. An experimental study of the method is reported.

Keywords

box bicluster tricluster 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  2. 2.
    Hartigan, J.A.: Direct clustering of a data matrix. Journal of the American Statistical Association 67(337), 123–129 (1972)CrossRefGoogle Scholar
  3. 3.
    Hartigan, J.A.: Clustering Algorithms. Wiley, Chichester (1975)zbMATHGoogle Scholar
  4. 4.
    Ignatov, D., Kuznetsov, S.: Biclustering methods using lattices of closed subsets. In: Proceedings of 12th National Conference on Artificial Intelligence, Moscow, FML, vol. 1, pp. 175–182 (2010) (in Russian)Google Scholar
  5. 5.
    Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: A survey. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB) 1(1), 24–45 (2004)CrossRefGoogle Scholar
  6. 6.
    Mirkin, B., Arabie, P., Hubert, L.: Additive two-mode clustering: the error-variance approach revisited. Journal of Classification 12, 243–263 (1995)CrossRefzbMATHGoogle Scholar
  7. 7.
    Mirkin, B.: Mathematical Classification and Clustering, p. 448. Kluwer, Dordrecht (1996)CrossRefzbMATHGoogle Scholar
  8. 8.
    Mirkin, B.: Two goals for biclustering: ”Box” and ”Dual” methods (2008) (unpublished manuscript) Google Scholar
  9. 9.
    Pensa, R.G., Boulicaut, J.-F.: Towards fault-tolerant formal concept analysis. In: Bandini, S., Manzoni, S. (eds.) AI*IA 2005. LNCS (LNAI), vol. 3673, pp. 212–223. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Prelic, A., Bleuler, S., Zimmermann, P., Wille, A., Bühlmann, P., Gruissem, W., Hennig, L., Thiele, L., Zitzler, E.: A Systematic Comparison and Evaluation of Biclustering Methods for Gene Expression Data. Bioinformatics 22(9), 1122–1129 (2006)CrossRefGoogle Scholar
  11. 11.
    Rome, J.E., Haralick, R.M.: Towards a formal concept analysis approach to exploring communities on the World Wide Web. In: International Conference on Formal Concept Analysis, Lens, France (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Boris G. Mirkin
    • 1
    • 2
  • Andrey V. Kramarenko
    • 1
  1. 1.National Research University–Higher School of EconomicsMoscowRussia
  2. 2.Department of Computer Science and Information SystemsBirkbeck University of LondonUK

Personalised recommendations