Advertisement

What is a Fuzzy Concept Lattice? II

  • Radim Belohlavek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6743)

Abstract

This paper is a follow up to “Belohlavek, Vychodil: What is a fuzzy concept lattice?, Proc. CLA 2005, 34–45”, in which we provided a then up-to-date overview of various approaches to fuzzy concept lattices and relationships among them. The main goal of the present paper is different, namely to provide an overview of conceptual issues in fuzzy concept lattices. Emphasized are the issues in which fuzzy concept lattices differ from ordinary concept lattices. In a sense, this paper is written for people familiar with ordinary concept lattices who would like to learn about fuzzy concept lattices. Due to the page limit, the paper is brief but we provide an extensive list of references with comments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnauld, A., Nicole, P.: La logique ou l’art de penser. English: Logic or the Art of Thinking, vol. 1662. Cambridge University Press, Cambridge (1996)Google Scholar
  2. 2.
    Bandler, W., Kohout, L.J.: Mathematical relations, their products and generalized morphisms. Technical Report EES-MMS-REL 77-3, ManMachine Systems Laboratory, Dept. Electrical Engineering, University of Essex, Essex, Colchester (1977)Google Scholar
  3. 3.
    Bandler, W., Kohout, L.J.: Semantics of implication operators and fuzzy relational products. Int. J. Man-Machine Studies 12, 89–116 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Barbut, M., Monjardet, B.: L’ordre et la classification, algèbre et combinatoire, tome II, Paris, Hachette (1970)Google Scholar
  5. 5.
    Belohlavek, R.: Lattices generated by binary fuzzy relations (extended abstract). In: Abstracts of FSTA 1998, Liptovský Ján, Slovakia, p. 11 (1998)Google Scholar
  6. 6.
    Belohlavek, R.: Fuzzy Galois connections. Math. Log. Quart. 45(4), 497–504 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Belohlavek, R.: Similarity relations in concept lattices. J. Logic Computation 10(6), 823–845 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Belohlavek, R.: Reduction and a simple proof of characterization of fuzzy concept lattices. Fundamenta Informaticae 46(4), 277–285 (2001)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Belohlavek, R.: Fuzzy closure operators. J. Mathematical Analysis and Applications 262, 473–489 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Belohlavek, R.: Fuzzy Relational Systems: Foundations and Principles. Kluwer Academic/Plenum Publishers, New York (2002)CrossRefzbMATHGoogle Scholar
  11. 11.
    Belohlavek, R.: Concept lattices and order in fuzzy logic. Annals of Pure and Applied Logic 128, 277–298 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Belohlavek, R.: Sup-t-norm and inf-residuum are one type of relational product: unifying framework and consequences. Fuzzy Sets and Systems (to appear) Google Scholar
  13. 13.
    Belohlavek, R.: Reduction of formal contexts as computing base: the case of binary and fuzzy attributes (to be submitted)Google Scholar
  14. 14.
    Belohlavek, R., De Baets, B., Outrata, J., Vychodil, V.: Computing the lattice of all fixpoints of a fuzzy closure operator. IEEE Transactions on Fuzzy Systems 18(3), 546–557 (2010)CrossRefGoogle Scholar
  15. 15.
    Belohlavek, R., Dvorak, J., Outrata, J.: Fast factorization by similarity in formal concept analysis of data with fuzzy attributes. J. Computer and System Sciences 73(6), 1012–1022 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Bělohlávek, R., Sklenář, V., Zacpal, J.: Crisply generated fuzzy concepts. In: Ganter, B., Godin, R. (eds.) ICFCA 2005. LNCS (LNAI), vol. 3403, pp. 269–284. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Belohlavek, R., Vychodil, V.: Reducing the size of fuzzy concept lattices by hedges. In: Proc. FUZZ-IEEE 2005, Reno, Nevada, pp. 663–668 (2005)Google Scholar
  18. 18.
    Belohlavek, R., Vychodil, V.: What is a fuzzy concept lattice? In: Proc. CLA 2005. CEUR WS, vol. 162, pp. 34–45 (2005)Google Scholar
  19. 19.
    Bělohlávek, R., Vychodil, V.: Attribute implications in a fuzzy setting. In: Missaoui, R., Schmidt, J. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3874, pp. 45–60. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Belohlavek, R., Vychodil, V.: Factor Analysis of Incidence Data via Novel Decomposition of Matrices. In: Ferré, S., Rudolph, S. (eds.) ICFCA 2009. LNCS, vol. 5548, pp. 83–97. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Ben Yahia, S., Jaoua, A.: Discovering knowledge from fuzzy concept lattice. In: Kandel, A., Last, M., Bunke, H. (eds.) Data Mining and Computational Intelligence, pp. 167–190. Physica-Verlag, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Burusco, A., Fuentes-Gonzáles, R.: The study of the L-fuzzy concept lattice. Mathware & Soft Computing 3, 209–218 (1994)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Burusco, A., Fuentes-Gonzáles, R.: Concept lattice defined from implication operators. Fuzzy Sets and Systems 114(3), 431–436 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 129–142. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  25. 25.
    Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer, Berlin (1999)CrossRefzbMATHGoogle Scholar
  26. 26.
    Gediga G., Düntsch I.: Modal-style operators in qualitative data analysis. In: Proc. IEEE ICDM 2002, p. 155 (Technical Report # CS-02-15, Brock University, 15 pp.) (2002)Google Scholar
  27. 27.
    Gély, A., Medina, R., Nourine, L.: Representing lattices using many-valued relations. Information Sciences 179(16), 2729–2739 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Georgescu, G., Popescu, A.: Concept lattices and similarity in non-commutative fuzzy logic. Fundamenta Informaticae 53(1), 23–54 (2002)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Georgescu, G., Popescu, A.: Non-dual fuzzy connections. Archive for Mathematical Logic 43, 1009–1039 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Goguen, J.A.: The logic of inexact concepts. Synthese 18, 325–373 (1968-1969)zbMATHGoogle Scholar
  31. 31.
    Gottwald, S.: A Treatise on Many-Valued Logics. Research Studies Press, Baldock (2001)zbMATHGoogle Scholar
  32. 32.
    Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)CrossRefzbMATHGoogle Scholar
  33. 33.
    Heider, E.R.: Universals in color naming and memory. J. of Experimental Psychology 93, 10–20 (1972)CrossRefGoogle Scholar
  34. 34.
    Höhle, U.: On the fundamentals of fuzzy set theory. J. Mathematical Analysis and Applications 201, 786–826 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic. Theory and Applications. Prentice-Hall, Englewood Cliffs (1995)zbMATHGoogle Scholar
  36. 36.
    Krajči, S.: Cluster based efficient generation of fuzzy concepts. Neural Network World 5, 521–530 (2003)Google Scholar
  37. 37.
    Krajči, S.: The basic theorem on generalized concept lattice. In: Bělohlávek, R., Snášel, V. (eds.) Proc. of 2nd Int. Workshop on CLA 2004, Ostrava, pp. 25–33 (2004)Google Scholar
  38. 38.
    Krajči, S.: A generalized concept lattice. Logic J. of IGPL 13, 543–550 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Krajči, S.: Every concept lattice with hedges is isomorphic to some generalized concept lattice. In: Proc. CLA 2005. CEUR WS, vol. 162, pp. 1–9 (2005)Google Scholar
  40. 40.
    Krupka, M.: Main theorem of fuzzy concept lattices revisited (submitted)Google Scholar
  41. 41.
    Lai, H., Zhang, D.: Concept lattices of fuzzy contexts: Formal concept analysis vs. rough set theory. Int. J. Approximate Reasoning 50(5), 695–707 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Medina, J., Ojeda-Aciego, M., Ruiz-Claviño, J.: Formal concept analysis via multi-adjoint concept lattices. Fuzzy Sets and Systems 160, 130–144 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Miller, G.A.: The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review 63(2), 343–355 (1956)CrossRefGoogle Scholar
  44. 44.
    Pankratieva, V.V., Kuznetsov, S.O.: Relations between proto-fuzzy concepts, crisply generated fuzzy concepts, and interval pattern structures. In: Proc. CLA 2010. CEUR WS, vol. 672, pp. 50–59 (2010)Google Scholar
  45. 45.
    Pollandt, S.: Fuzzy Begriffe. Springer, Berlin (1997)CrossRefzbMATHGoogle Scholar
  46. 46.
    Rosch, E.: Natural categories. Cognitive Psychology 4, 328–350 (1973)CrossRefGoogle Scholar
  47. 47.
    Ward, M., Dilworth, R.P.: Residuated lattices. Trans. AMS 45, 335–354 (1939)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht (1982)CrossRefGoogle Scholar
  49. 49.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Zhao, H., Zhang, D.: Many vaued lattice and their representations. Fuzzy Sets and Sytems 159, 81–94 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Radim Belohlavek
    • 1
  1. 1.Department of Computer SciencePalacky UniversityOlomoucCzech Republic

Personalised recommendations