Uncertainty exists almost everywhere. In the past decades, many studies about randomness and fuzziness were developed. Many theories and models for expressing and processing uncertain knowledge, such as probability & statistics, fuzzy set, rough set, interval analysis, cloud model, grey system, set pair analysis, extenics, etc., have been proposed. In this paper, these theories are discussed. Their key idea and basic notions are introduced and their difference and relationship are analyzed. Rough set theory, which expresses and processes uncertain knowledge with certain methods, is discussed in detail.


uncertain knowledge expressing uncertain knowledge processing fuzzy set rough set cloud model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20, 87–96 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Atanassov, K.T.: Intuitionistic fuzzy sets. Physica-Verlag, Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bustince, H., Burillo, P.: Vague Sets are intuitionistic fuzzy sets. Fuzzy Sets and Systems 79, 403–405 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cai, W.: The extension set and non-compatible problems. Journal of Science Explore (1), 83–97 (1983)Google Scholar
  5. 5.
    Chanas, S., Kuchta, D.: Further remarks on the relation between rough and fuzzy sets. Fuzzy Sets and Systems 47, 391–394 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Deng, J.L.: Grey systems. China Ocean Press, Beijing (1988)Google Scholar
  7. 7.
    Deschrijver, G., Kerre, E.E.: On the relationship between some extensions of fuzzy set theory. Fuzzy Sets and Systems 133, 227–235 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gau, W.L., Buehrer, D.J.: Vague sets. IEEE Transaction on Systems Man Cybernetics 23(2), 610–614 (1993)CrossRefzbMATHGoogle Scholar
  9. 9.
    Goguen, J.A.: L −fuzzy sets. Journal of mathematical analysis and applications 18, 145–174 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hansen, E.R.: Global optimization using interval analysis. Marcel Dekker, New York (1992)zbMATHGoogle Scholar
  11. 11.
    Karnik, N.N., Mendel, J.M., Liang, Q.L.: Type-2 fuzzy logic systems. IEEE Transaction on Fuzzy Systems 7(6), 643–658 (1999)CrossRefGoogle Scholar
  12. 12.
    Kerre, E.E.: A first view on the alternatives of fuzzy set theory. Computational Intelligence in Theory and Practice, 55–72 (2001)Google Scholar
  13. 13.
    Li, D.Y., Meng, H.J., Shi, X.M.: Membership clouds and cloud generators. Journal of Computer Research and Development 32, 32–41 (1995)Google Scholar
  14. 14.
    Moore, R.E.: Interval analysis, pp. 25–39. Prentice-Hall, Englewood Cliffs (1966)Google Scholar
  15. 15.
    Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 5(11), 341–356 (1982)CrossRefzbMATHGoogle Scholar
  16. 16.
    Pawlak, Z.: Rough sets and fuzzy sets. Fuzzy Sets and Systems 17, 99–102 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Sun, H.: On operations of the extension set. Mathematics in Practice and Theory 37(11), 180–184 (2007)zbMATHGoogle Scholar
  18. 18.
    Wu, Q., Liu, Z.T.: Real formal concept analysis based on grey-rough set theory. Knowledge-based Systems 22, 38–45 (2009)CrossRefGoogle Scholar
  19. 19.
    Yang, C.Y., Cai, W.: New definition of extension set. ournal of Guangdong University of Technology 18(1), 59–60 (2001)Google Scholar
  20. 20.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning-I. Information Sciences 8, 199–249 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Zhao, K.Q.: Set pair analysis and its primary application. Zhejiang Science and Technology Press, Hangzhou (2000)Google Scholar
  23. 23.
    Zettler, M., Garloff, J.: Robustness analysis of polynomials with polynomials parameter dependency using Bernstein expansion. IEEE Trans. on Automatic Control 43(3), 425–431 (1998)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Guoyin Wang
    • 1
  1. 1.Institute of Computer Science and TechnologyChongqing University of Posts and TelecommunicationsChongqingChina

Personalised recommendations