Modeling Engagement Dynamics in Spelling Learning

  • Gian-Marco Baschera
  • Alberto Giovanni Busetto
  • Severin Klingler
  • Joachim M. Buhmann
  • Markus Gross
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6738)

Abstract

In this paper, we introduce a model of engagement dynamics in spelling learning. The model relates input behavior to learning, and explains the dynamics of engagement states. By systematically incorporating domain knowledge in the preprocessing of the extracted input behavior, the predictive power of the features is significantly increased. The model structure is the dynamic Bayesian network inferred from student input data: an extensive dataset with more than 150 000 complete inputs recorded through a training software for spelling. By quantitatively relating input behavior and learning, our model enables a prediction of focused and receptive states, as well as of forgetting.

Keywords

engagement modeling feature processing domain knowledge dynamic Bayesian network learning spelling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cooper, D.G., Muldner, K., Arroyo, I., Woolf, B.P., Burleson, W.: Ranking feature sets for emotion models used in classroom based intelligent tutoring systems. In: De Bra, P., Kobsa, A., Chin, D. (eds.) UMAP 2010. LNCS, vol. 6075, pp. 135–146. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Heray, A., Frasson, C.: Predicting Learner Answers Correctness through Brainwaves Assessment and Emotional Dimensions. In: AIED 2009, pp. 49–56 (2009)Google Scholar
  3. 3.
    Baker, R.S., Corbett, A.T., Koedinger, K.R.: Detecting student misuse of intelligent tutoring systems. In: Lester, J.C., Vicari, R.M., Paraguaçu, F. (eds.) ITS 2004. LNCS, vol. 3220, pp. 531–540. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Johns, J., Woolf, B.: A Dynamic Mixture Model to Detect Student Motivation and Proficiency. In: UMAP 2006, pp. 163–168 (2006)Google Scholar
  5. 5.
    Busetto, A.G., Ong, C.S., Buhmann, J.M.: Optimized Expected Information Gain for Nonlinear Dynamical Systems. In: ICML 2009, pp. 97–104 (2009)Google Scholar
  6. 6.
    Arroyo, I., Woolf, B.: Inferring Learning and Attitudes from a Bayesian Network of Log File Data. In: AIED 2005, pp. 33–40 (2005)Google Scholar
  7. 7.
    Kort, B., Reilly, R., Picard, R.W.: An Affective Model of Interplay Between Emotions and Learning: Reengineering Educational Pedagogy - Building a Learning Companion. Advanced Learning Technologies, 43–46 (2001)Google Scholar
  8. 8.
    Gross, M., Vögeli, C.: A Multimedia Framework for Effective Language Training. Computer & Graphics 31, 761–777 (2007)CrossRefGoogle Scholar
  9. 9.
    Kast, M., Meyer, M., Vögeli, C., Gross, M., Jäncke, L.: Computer-based Multisensory Learning in Children with Developmental Dyslexia. Restorative Neurology and Neuroscience 25(3-4), 355–369 (2007)Google Scholar
  10. 10.
    Kullback, S., Leibler, R.A.: On Information and Sufficiency. Annals of Mathematical Statistics 22(1), 79–86 (1951)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Bishop, C.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)MATHGoogle Scholar
  12. 12.
    Baschera, G.M., Gross, M.: Poisson-Based Inference for Perturbation Models in Adaptive Spelling Training. International Journal of AIED 20(1) (2010) (in press)Google Scholar
  13. 13.
    Nelder, J.A., Mead, R.: A Simplex Method for Function Minimization. Computer Journal 7, 308–313 (1965)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Murphy, K.: The Bayes Net Toolbox for Matlab. Computing Science and Statistics 33 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Gian-Marco Baschera
    • 1
  • Alberto Giovanni Busetto
    • 1
    • 2
  • Severin Klingler
    • 1
  • Joachim M. Buhmann
    • 1
    • 2
  • Markus Gross
    • 1
  1. 1.Department of Computer ScienceETH ZürichSwitzerland
  2. 2.Competence Center for Systems Physiology and Metabolic DiseasesZürichSwitzerland

Personalised recommendations