Skip to main content

Comparison of Artificial Neural Networks and Dynamic Principal Component Analysis for Fault Diagnosis

  • Conference paper
Modern Approaches in Applied Intelligence (IEA/AIE 2011)


Dynamic Principal Component Analysis (DPCA) and Artificial Neural Networks (ANN) are compared in the fault diagnosis task. Both approaches are process history based methods, which do not assume any form of model structure, and rely only on process historical data. Faults in sensors and actuators are implemented to compare the online performance of both approaches in terms of quick detection, isolability capacity and multiple faults identifiability. An industrial heat exchanger was the experimental test-bed system. Multiple faults in sensors can be isolated using an individual control chart generated by the principal components; the error of classification was 15.28% while ANN presented 4.34%. For faults in actuators, ANN showed instantaneous detection and 14.7% lower error classification. However, DPCA required a minor computational effort in the training step.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others


  1. Venkatasubramanian, V., Rengaswamy, R., Kavuri, S., Yin, K.: A Review of Process Fault Detection and Diagnosis Part I Quantitative Model-Based Methods. Computers and Chemical Eng. 27, 293–311 (2003)

    Article  Google Scholar 

  2. Habbi, H., Kinnaert, M., Zelmat, M.: A Complete Procedure for Leak Detection and Diagnosis in a Complex Heat Exchanger using Data-Driven Fuzzy Models. ISA Trans. 48, 354–361 (2008)

    Article  Google Scholar 

  3. Astorga-Zaragoza, C.M., Alvarado-Martínez, V.M., Zavala-Río, A., Méndez-Ocaña, R., Guerrero-Ramírez, G.V.: Observer-based Monitoring of Heat Exchangers. ISA Trans. 47, 15–24 (2008)

    Article  Google Scholar 

  4. Morales-Menendez, R., Freitas, N.D., Poole, D.: State Estimation and Control of Industrial Processes using Particles Filters. In: IFAC-ACC 2003, Denver Colorado U.S.A, pp. 579–584 (2003)

    Google Scholar 

  5. Tan, C.K., Ward, J., Wilcox, S.J., Payne, R.: Artificial Neural Network Modelling of the Thermal Performance of a Compact Heat Exchanger. Applied Thermal Eng. 29, 3609–3617 (2009)

    Article  Google Scholar 

  6. Rangaswamy, R., Venkatasubramanian, V.: A Fast Training Neural Network and its Updation for Incipient Fault Detection and Diagnosis. Computers and Chemical Eng. 24, 431–437 (2000)

    Article  Google Scholar 

  7. Perera, A., Papamichail, N., Bârsan, N., Weimar, U., Marco, S.: On-line Novelty Detection by Recursive Dynamic Principal Component Analysis and Gas Sensor Arrays under Drift Conditions. IEEE Sensors J. 6(3), 770–783 (2006)

    Article  Google Scholar 

  8. Mina, J., Verde, C.: Fault Detection for MIMO Systems Integrating Multivariate Statistical Analysis and Identification Methods. In: IFAC-ACC 2007, New York U.S.A, pp. 3234–3239 (2007)

    Google Scholar 

  9. Detroja, K., Gudi, R., Patwardhan, S.: Plant Wide Detection and Diagnosis using Correspondance Analysis. Control Eng. Practice 15(12), 1468–1483 (2007)

    Article  Google Scholar 

  10. Tudón-Martínez, J.C., Morales-Menendez, R., Garza-Castañón, L.: Fault Diagnosis in a Heat Exchanger using Process History based-Methods. In: ESCAPE 2010, Italy, pp. 169–174 (2010)

    Google Scholar 

  11. Peña, D.: Análisis de Datos Multivariantes. McGrawHill, España (2002)

    Google Scholar 

  12. Tudón-Martínez, J.C., Morales-Menendez, R., Garza-Castañón, L.: Fault Detection and Diagnosis in a Heat Exchanger. In: 6th ICINCO 2009, Milan Italy, pp. 265–270 (2009)

    Google Scholar 

  13. Hotelling, H.: Analysis of a Complex of Statistical Variables into Principal Components. J. Educ. Psychol. 24 (1993)

    Google Scholar 

  14. Freeman, J.A., Skapura, D.M.: Neural Networks: Algorithms, Applications and Programming Techniques. Adisson-Wesley, Reading (1991)

    MATH  Google Scholar 

  15. Korbicz, J., Koscielny, J.M., Kowalczuk, Z., Cholewa, W.: Fault Diagnosis Models, Artificial Intelligence, Applications. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  16. Woods, K., Bowyer, K.W.: Generating ROC Curves for Artificial Neural Networks. IEEE Trans. on Medical Imaging 16(3), 329–337 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tudón-Martínez, J.C., Morales-Menendez, R., Garza-Castañón, L., Ramirez-Mendoza, R. (2011). Comparison of Artificial Neural Networks and Dynamic Principal Component Analysis for Fault Diagnosis. In: Mehrotra, K.G., Mohan, C.K., Oh, J.C., Varshney, P.K., Ali, M. (eds) Modern Approaches in Applied Intelligence. IEA/AIE 2011. Lecture Notes in Computer Science(), vol 6703. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21821-7

  • Online ISBN: 978-3-642-21822-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics