Advertisement

Abstract

The importance of process improvement and the role that best practice reference models play in the achievement of process improvement are both well recognized. Best practice reference models are generally created by experts in the domain who are external to the organization. However, best practice can also be implicitly derived from the work practices of actual workers within the organisation, especially when there is opportunity for variance within the work, i.e. there may be different approaches to achieve the same process goal. In this paper, we propose to support process improvement intrinsically by utilizing the experiences and knowledge of business process users to inform and improve the current practices. The main challenge in this regard is identifying the “best” previous practices, which are often based on multiple criteria. To this end, we propose a method based on the skyline operator, which is applied on criteria relevant data derived from business process execution logs. We will demonstrate that the proposed method is capable to generate meaningful recommendations from large data sets in an efficient way, thereby effectively facilitating organizational learning and inherent process improvement.

Keywords

Process Improvement Best Precedents Flexible Processes Multi Criteria Decision Making Business Process Variants Skyline Operator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gartner: Meeting the Challenge: The 2009 CIO Agenda. Egham, UK (2009) Google Scholar
  2. 2.
    Lu, R., Sadiq, S.K.: Managing process variants as an information resource. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 426–431. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Reichert, M., Rinderle, S., Dadam, P.: ADEPT workflow management system: In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.) BPM 2003. LNCS, vol. 2678, pp. 370–379. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Aalst, W.M.P.v.d.: Flexible Workflow Management Systems: An Approach Based on Generic Process Models. In: Database and Expert Systems Applications, 818–818 (1999) Google Scholar
  5. 5.
    Sadiq, S., Sadiq, W., Orlowska, M.: A Framework for Constraint Specification and Validation in Flexible Workflows. Information Systems 30 (2005)Google Scholar
  6. 6.
    Schonenberg, H., Weber, B., van Dongen, B.F., van der Aalst, W.M.P.: Supporting flexible processes through recommendations based on history. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 51–66. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Aalst, W.M.P.v.d., Dongen, B.F.v., Herbst, J., Maruster, L., Schimm, G., Weijters, A.J.M.M.: Workflow mining: a survey of issues and approaches. Data Knowl. Eng. 47, 237–267 (2003)CrossRefGoogle Scholar
  8. 8.
    van der Aalst, W.M.P., de Medeiros, A.K.A., Weijters, A.J.M.M.T.: Process equivalence: Comparing two process models based on observed behavior. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 129–144. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Lu, R., Sadiq, S.K.: On the discovery of preferred work practice through business process variants. In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 165–180. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    van Dongen, B., Dijkman, R., Mendling, J.: Measuring Similarity between Business Process Models. In: Advanced Information Systems Engineering, pp. 450–464 (2008)Google Scholar
  11. 11.
    Hwang, C., Yoon, K.: Multiple attribute decision making: methods and applications: a state-of-the-art survey. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  12. 12.
    Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE (2001) Google Scholar
  13. 13.
    Leymann, F., Altenhuber, W.: Managing business processes as an information resource. IBM Syst. J. 33, 326–348 (1994)CrossRefGoogle Scholar
  14. 14.
    Biazzo, S.: Approaches to business process analysis: a review. Business Process Management Journal 6, 99–112 (2000)CrossRefGoogle Scholar
  15. 15.
    Thom, L., Reichert, M., Chiao, C., Iochpe, C., Hess, G.: Inventing Less, Reusing More, and Adding Intelligence to Business Process Modeling. In: Database and Expert Systems Applications, pp. 837–850 (2008)Google Scholar
  16. 16.
    Lin, X., Yuan, Y., Zhang, Q., Zhang, Y.: Selecting stars: The k most representative skyline operator. In: ICDE, pp. 86–95. Citeseer (2007)Google Scholar
  17. 17.
    Wong, R.C.-W., Pei, J., Fu, A.W.-C., Wang, K.: Online skyline analysis with dynamic preferences on nominal attributes. IEEE Transactions on Knowledge and Data Engineering 21, 35 (2009)CrossRefGoogle Scholar
  18. 18.
    Hsin-Hsien, L., Wei-Guang, T.: Incorporating Multi-Criteria Ratings in Recommendation Systems. In: IEEE International Conference on Information Reuse and Integration, IRI 2007, pp. 273–278 (2007)Google Scholar
  19. 19.
    Mansar, S., Reijers, H., Ounnar, F.: Development of a decision-making strategy to improve the efficiency of BPR. Expert Systems with Applications 36, 3248–3262 (2009)CrossRefGoogle Scholar
  20. 20.
    Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: an online algorithm for skyline queries. In: Proceedings of the 28th International Conference on Very Large Data Bases, VLDB Endowment, Hong Kong, China (2002)Google Scholar
  21. 21.
    Wong, R.C.-W., Fu, A.W.-C., Pei, J., Ho, Y.S., Wong, T., Liu, Y.: Efficient skyline querying with variable user preferences on nominal attributes. In: Proc. VLDB Endow., vol. 1, pp. 1032–1043 (2008)Google Scholar
  22. 22.
    Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with Presorting. In: International Conference on Data Engineering (ICDE), pp. 717–717 (2003)Google Scholar
  23. 23.
    Yeh, C.H.: A Problem-based Selection of Multi-attribute Decision-making Methods. International Transactions in Operational Research 9, 169–181 (2002)CrossRefGoogle Scholar
  24. 24.
    Zimmermann, H.J.: Fuzzy set theory–and its applications. Kluwer Academic Pub., Dordrecht (2001)CrossRefGoogle Scholar
  25. 25.
    Fishburn, P.C.: Additive utilities with incomplete product sets: application to priorities and assignments. Operations Research 15, 537–542 (1967)CrossRefGoogle Scholar
  26. 26.
    Eder, H., Wei, F.: Evaluation of skyline algorithms in PostgreSQL. In: Proceedings of the 2009 International Database Engineering & Applications Symposium. ACM, Cetraro-Calabria (2009)Google Scholar
  27. 27.
    Rozinat, A., van der Aalst, W.M.P.: Decision mining in proM. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 420–425. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mukhammad Andri Setiawan
    • 1
  • Shazia Sadiq
    • 1
  1. 1.School of Information Technology & Electrical EngineeringThe University of QueenslandAustralia

Personalised recommendations