Influence of a Multimodal Assistance Supporting Anticipatory Driving on the Driving Behavior and Driver’s Acceptance

  • Hermann Hajek
  • Daria Popiv
  • Mariana Just
  • Klaus Bengler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6776)


This work presents an investigation of a multimodal human-machine interface (HMI) of an anticipatory driver assistance system. The HMI of the system consists of visual indicators displayed in the digital instrument cluster and discrete impulses of an active gas pedal (AGP). The assistance recognizes the upcoming driving situation, informs the driver about its emergence, and suggests a driving action, which execution assures significant reduction in fuel consumption. The experiment is performed in the fixed-base driving simulator. Results show that during assisted drives an average reduction in fuel consumption amounts to 7.5%, in comparison to the drives without assistance. In 50% and 80% of all the cases, participants release the accelerator correspondingly within 1.2 and 2 seconds after receiving the first information. Two thirds of the test subjects grade the concept as “good” and “very good”. The participants appreciate AGP discrete feedback especially in rare, unexpected, and potentially critical situations.


Advanced driver assistance system multimodal human-machine interface anticipatory driving active gas pedal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Busch, F.: Car-to-X im Verkehrswesen, munich network Tagung, München (2007)Google Scholar
  2. 2.
    Härri, J., Hartenstein, H., Torrent Moreno, M., Schmidt-Eisenlohr, F., Killat, M., Mittag, J., Tillert, T.: Car-to-X Communication Simulations: Tools, Methodology, Performance Results. In: Network on Wheels (NoW) final Workshop, Daimler AG, Ulm (2008)Google Scholar
  3. 3.
    Donges, E.: Ein regelungstechnisches Zwei-Ebenen-Modell des menschlichen Lenkverhaltens im Kraftfahrzeug. Zeitschrift für Verkehrssicherheit 24, 98–112 (1978)Google Scholar
  4. 4.
    Nestler, S., Duschl, M., Popiv, D., Rakic, M., Klinker, G.: Concept for Visualizing Concealed Objects to Improve the Driver’s Anticipation. In: Proc. 17th World Congress on Ergonomics IEA, Beijing, China (August 2009)Google Scholar
  5. 5.
    Samper, K., Kuhn, K.-P.: Reduktion des Kraftstoffverbrauchs durch ein vorausschauendes Assistenzsystem. Düsseldorf, aus: VDI Berichte 1613, VDI Verlag (2001)Google Scholar
  6. 6.
    Popiv, D., Rommerskirchen, C., Bengler, K., Duschl, M., Rakic, M.: Effects of assistance of anticipatory driving during deceleration phases. In: Proc. European Conference on Human Centered Design for Intelligent Transport Systems, Berlin (2010)Google Scholar
  7. 7.
    Hajek, H.: Untersuchung des Einflusses von einem aktiven Gaspedal auf die Fahrerreaktion und die Akzeptanz zur Unterstützung des vorausschauenden Fahrerns. Lehrstuhl für Ergonomie, Technische Universität München, unpublished Diploma Thesis (2010)Google Scholar
  8. 8.
    Rommerskirchen, C.: Zeitliche Anforderungen zur Unterstützung von vorausschauenden Fahren unter Optimierung von Effizienz und Akzeptanz, Lehrstuhl für Ergonomie. Technische Universität München, unpublished Diploma Thesis (2009)Google Scholar
  9. 9.
  10. 10.
    Heißing, B.: Fahrwerkshandbuch. Vieweg und Teubner, Germany (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hermann Hajek
    • 1
  • Daria Popiv
    • 1
  • Mariana Just
    • 2
  • Klaus Bengler
    • 1
  1. 1.Lehrstuhl für ErgonomieTechnische Universität MünchenGarching bei MünchenGermany
  2. 2.BMW Group Forschung und TechnikMunichGermany

Personalised recommendations