Advertisement

Charge Orbits and Moduli Spaces of Black Hole Attractors

  • Alessio MarraniEmail author
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2027)

Abstract

We report on the theory of “large” U-duality charge orbits and related “moduli spaces” of extremal black hole attractors in N = 2, d = 4 Maxwell–Einstein supergravity theories with symmetric scalar manifolds, as well as in N ≥ 3-extended, d = 4 supergravities.

Keywords

Black Hole Modulus Space Vector Multiplet Jordan Algebra Black Hole Entropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The contents of this brief report result from collaborations with Stefano Bellucci, Murat Günaydin, Renata Kallosh, and especially Sergio Ferrara, which are gratefully acknowledged.

References

  1. 1.
    S. Ferrara, R. Kallosh, A. Strominger, N= 2 extremal black holes. Phys. Rev. D52, 5412 (1995). hep-th/9508072 Google Scholar
  2. 2.
    A. Strominger, Macroscopic entropy of N= 2 extremal black holes. Phys. Lett. B383, 39 (1996). hep-th/9602111.Google Scholar
  3. 3.
    S. Ferrara, R. Kallosh, Supersymmetry and attractors. Phys. Rev. D54, 1514 (1996). hep-th/9602136 Google Scholar
  4. 4.
    S. Ferrara, R. Kallosh, Universality of supersymmetric attractors. Phys. Rev. D54, 1525 (1996). hep-th/9603090 Google Scholar
  5. 5.
    S. Ferrara, G.W. Gibbons, R. Kallosh, Black holes and critical points in moduli space. Nucl. Phys. B500, 75 (1997). hep-th/9702103 Google Scholar
  6. 6.
    S. Bellucci, S. Ferrara, A. Marrani, Supersymmetric Mechanics, Vol. 2: The Attractor Mechanism and Space-Time Singularities. Lect. Notes Phys., vol. 701 (Springer, Heidelberg, 2006)Google Scholar
  7. 7.
    B. Pioline, Lectures on black holes, topological strings and quantum attractors. Class. Quant. Grav. 23, S981 (2006). hep-th/0607227 Google Scholar
  8. 8.
    L. Andrianopoli, R. D’Auria, S. Ferrara, M. Trigiante, Extremal Black Holes in Supergravity. Lect. Notes Phys., vol. 737 (Springer, Heidelberg, 2008), p. 661. hep-th/0611345 Google Scholar
  9. 9.
    A. Sen, Black hole entropy function, attractors and precision counting of microstates. Gen. Rel. Grav. 40, 2249 (2008). arXiv:0708.1270 Google Scholar
  10. 10.
    S. Bellucci, S. Ferrara, R. Kallosh, A. Marrani, Extremal Black Hole and Flux Vacua Attractors. Lect. Notes Phys., vol. 755 (Springer, Heidelberg, 2008), p. 115. arXiv:0711.4547 Google Scholar
  11. 11.
    S. Ferrara, K. Hayakawa, A. Marrani, Erice lectures on black holes and attractors. Fortsch. Phys. 56, 993 (2008). arXiv:0805.2498.Google Scholar
  12. 12.
    S. Bellucci, S. Ferrara, M. Günaydin, A. Marrani, SAM lectures on extremal Black holes in d = 4 extended supergravity. arXiv:0905.3739 Google Scholar
  13. 13.
    M. Günaydin, Lectures on spectrum generating symmetries and U-duality in supergravity, extremal black holes, quantum attractors and harmonic superspace. arXiv:0908.0374 Google Scholar
  14. 14.
    A. Ceresole, S. Ferrara, Black holes and attractors in supergravity. arXiv:1009.4715Google Scholar
  15. 15.
    L. Andrianopoli, M. Bertolini, A. Ceresole, R. D’Auria, S. Ferrara, P. Frè, T. Magri, N= 2 Supergravity and N= 2 super Yang-Mills theory on general scalar manifolds: Symplectic covariance, gaugings and the momentum map. J. Geom. Phys. 23, 111 (1997). hep-th/9605032 Google Scholar
  16. 16.
    M.J. Duff, String triality, black hole entropy and Cayley’s hyperdeterminant. Phys. Rev. D76, 025017 (2007). hep-th/0601134; See e.g. the following papers (and Refs. therein)Google Scholar
  17. 17.
    R. Kallosh, A. Linde, Strings, black holes, and quantum information. Phys. Rev. D73, 104033 (2006). hep-th/0602061 Google Scholar
  18. 18.
    M.J. Duff, S. Ferrara, Black hole entropy and quantum information. Lect. Notes Phys. 755, 93 (2008). arXiv:hepth/0612036 Google Scholar
  19. 19.
    L. Borsten, D. Dahanayake, M.J. Duff, H. Ebrahim, W. Rubens, Black holes, Qubits and Octonions. Phys. Rept. 471, 113 (2009). arXiv:0809.4685 [hep-th] Google Scholar
  20. 20.
    P. Levay, STU black holes as four qubit systems. Phys. Rev. D82, 026003 (2010). arXiv: 1004.3639 [hep-th] Google Scholar
  21. 21.
    L. Borsten, D. Dahanayake, M.J. Duff, A. Marrani, W. Rubens, Four-Qubit entanglement from string theory. Phys. Rev. Lett. 105, 100507 (2010). arXiv:1005.4915 [hep-th] Google Scholar
  22. 22.
    G.W. Gibbons, C.M. Hull, A Bogomol’ny bound for general relativity and solitons in N= 2 supergravity. Phys. Lett. B109, 190 (1982)MathSciNetGoogle Scholar
  23. 23.
    G.W. Gibbons, P.K. Townsend, Vacuum interpolation in supergravity via super-p-branes. Phys. Rev. Lett. 71, 3754 (1993). hep-th/9307049 Google Scholar
  24. 24.
    R. Arnowitt, S. Deser, C.W. Misner, in The Dynamics of General Relativity, ed. by L. Witten. Gravitation: An Introduction to Current Research (Wiley, New York, 1962)Google Scholar
  25. 25.
    B. Bertotti, Uniform electromagnetic field in the theory of general relativity. Phys. Rev. 116, 1331 (1959)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    I. Robinson, Bull. Acad. Polon. 7, 351 (1959)zbMATHGoogle Scholar
  27. 27.
    J.D. Bekenstein, Phys. Rev. D7, 2333 (1973)MathSciNetGoogle Scholar
  28. 28.
    S.W. Hawking, Phys. Rev. Lett. 26, 1344 (1971)CrossRefGoogle Scholar
  29. 29.
    C. DeWitt, B.S. DeWitt, Black Holes (Les Houches 1972) (Gordon and Breach, New York, 1973)Google Scholar
  30. 30.
    S.W. Hawking, Nature 248, 30 (1974)CrossRefGoogle Scholar
  31. 31.
    S.W. Hawking, Comm. Math. Phys. 43, 199 (1975)MathSciNetCrossRefGoogle Scholar
  32. 32.
    J.F. Luciani, Coupling of O(2) supergravity with several vector multiplets. Nucl. Phys. B132, 325 (1978)MathSciNetCrossRefGoogle Scholar
  33. 33.
    L. Castellani, A. Ceresole, S. Ferrara, R. D’Auria, P. Fré, E. Maina, The complete N= 3 matter coupled supergravity. Nucl. Phys. B268, 317 (1986)CrossRefGoogle Scholar
  34. 34.
    C. Hull, P.K. Townsend, Unity of superstring dualities. Nucl. Phys. B438, 109 (1995). hep-th/9410167 Google Scholar
  35. 35.
    S. Ferrara, M. Günaydin, Orbits of exceptional groups, duality and BPS states in string theory. Int. J. Mod. Phys. A13, 2075 (1998). hep-th/9708025 Google Scholar
  36. 36.
    R. D’Auria, S. Ferrara, M.A. Lledó, On central charges and Hamiltonians for 0 -brane dynamics. Phys. Rev. D60, 084007 (1999). hep-th/9903089 Google Scholar
  37. 37.
    S. Ferrara, J.M. Maldacena, Branes, central charges and U -duality invariant BPS conditions. Class. Quant. Grav. 15, 749 (1998). hep-th/9706097 Google Scholar
  38. 38.
    M. Günaydin, G. Sierra, P.K. Townsend, Exceptional supergravity theories and the magic square. Phys. Lett. B133, 72 (1983)Google Scholar
  39. 39.
    M. Günaydin, G. Sierra, P.K. Townsend, The geometry of N = 2 Maxwell–Einstein supergravity and Jordan algebras. Nucl. Phys. B242, 244 (1984)CrossRefGoogle Scholar
  40. 40.
    M. Günaydin, G. Sierra, P.K. Townsend, Gauging the d = 5 Maxwell–Einstein supergravity theories: More on Jordan algebras. Nucl. Phys. B253, 573 (1985)CrossRefGoogle Scholar
  41. 41.
    E. Cremmer, A. Van Proeyen, Classification of Kähler manifolds in N = 2 vector multiplet supergravity couplings. Class. Quant. Grav. 2, 445 (1985)zbMATHCrossRefGoogle Scholar
  42. 42.
    B. de Wit, F. Vanderseypen, A. Van Proeyen, Symmetry structures of special geometries. Nucl. Phys. B400, 463 (1993). hep-th/9210068 Google Scholar
  43. 43.
    S. Ferrara, A. Marrani, in Symmetric Spaces in Supergravity, ed. by D. Babbitt, V. Vyjayanthi, R. Fioresi. Symmetry in Mathematics and Physics, Contemporary Mathematics, vol. 490 (American Mathematical Society, Providence, 2009). arXiv:0808.3567 Google Scholar
  44. 44.
    S. Bellucci, S. Ferrara, M. Günaydin, A. Marrani, Charge orbits of symmetric special geometries and attractors. Int. J. Mod. Phys. A21, 5043 (2006). hep-th/0606209 Google Scholar
  45. 45.
    S. Ferrara, A. Gnecchi, A. Marrani, d = 4 Attractors, effective horizon radius and fake supergravity. Phys. Rev. D78, 065003 (2008). arXiv:0806.3196 Google Scholar
  46. 46.
    P. Jordan, J. Von Neumann, E. Wigner, On an algebraic generalization of the quantum mechanical formalism. Ann. Math. 35, 29 (1934)CrossRefGoogle Scholar
  47. 47.
    N. Jacobson, Ann. Math. Soc. Coll. Publ. 39 (1968)Google Scholar
  48. 48.
    M. Günaydin, Exceptional realizations of lorentz group: Supersymmetries and leptons. Nuovo Cimento A29, 467 (1975)Google Scholar
  49. 49.
    M. Günaydin, C. Piron, H. Ruegg, Moufang plane and Octonionic quantum mechanics. Comm. Math. Phys. 61, 69 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    H. Freudenthal, Proc. Konink. Ned. Akad. Wetenschap A62, 447 (1959)Google Scholar
  51. 51.
    B.A. Rozenfeld, Dokl. Akad. Nauk. SSSR 106, 600 (1956)MathSciNetzbMATHGoogle Scholar
  52. 52.
    J. Tits, Mem. Acad. Roy. Belg. Sci. 29, 3 (1955)MathSciNetGoogle Scholar
  53. 53.
    L. Andrianopoli, R. D’Auria, S. Ferrara, U Duality and central charges in various dimensions revisited. Int. J. Mod. Phys. A13, 431 (1998). hep-th/9612105 Google Scholar
  54. 54.
    S. Ferrara, E.G. Gimon, R. Kallosh, Magic supergravities, N= 8 and black hole composites. Phys. Rev. D74, 125018 (2006). hep-th/0606211 Google Scholar
  55. 55.
    D. Roest, H. Samtleben, Twin supergravities. Class. Quant. Grav. 26, 155001 (2009). arXiv:0904.1344 Google Scholar
  56. 56.
    R. Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications (Dover, NY, 2006)Google Scholar
  57. 57.
    S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces (Academic, New York, 1978)zbMATHGoogle Scholar
  58. 58.
    R. Slansky, Group theory for unified model building. Phys. Rep. 79, 1 (1981)MathSciNetCrossRefGoogle Scholar
  59. 59.
    S. Ferrara, R. Kallosh, On N = 8 attractors. Phys. Rev. D73, 125005 (2006). hep-th/0603247 Google Scholar
  60. 60.
    S. Ferrara, A. Marrani, N= 8 non-BPS attractors, fixed scalars and magic supergravities. Nucl. Phys. B788, 63 (2008). arXiV:0705.3866 Google Scholar
  61. 61.
    L. Andrianopoli, R. D’Auria, S. Ferrara, U invariants, black hole entropy and fixed scalars. Phys. Lett. B403, 12 (1997). hep-th/9703156 Google Scholar
  62. 62.
    S. Ferrara, A. Marrani, On the moduli space of non-BPS attractors for N = 2 symmetric manifolds. Phys. Lett. B652, 111 (2007). arXiV:0706.1667 Google Scholar
  63. 63.
    A. Ceresole, S. Ferrara, A. Marrani, 4d /5d correspondence for the black hole potential and its critical points. Class. Quant. Grav. 24, 5651 (2007). arXiV:0707.0964 Google Scholar
  64. 64.
    L. Andrianopoli, R. D’Auria, S. Ferrara, M. Trigiante, Fake superpotential for large and small extremal black holes. JHEP 1008, 126 (2010). arXiv:1002.4340 Google Scholar
  65. 65.
    F. Larsen, The attractor mechanism in five dimensions. Lect. Notes Phys. 755, 249 (2008). hep-th/0608191 Google Scholar
  66. 66.
    L. Andrianopoli, S. Ferrara, A. Marrani, M. Trigiante, Non-BPS attractors in 5d and 6d extended supergravity. Nucl. Phys. B795, 428 (2008). arXiv:0709.3488 Google Scholar
  67. 67.
    S. Ferrara, A. Marrani, J.F. Morales, H. Samtleben, Intersecting attractors. Phys. Rev. D79, 065031 (2009). arXiv:0812.0050 Google Scholar
  68. 68.
    B.L. Cerchiai, S. Ferrara, A. Marrani, B. Zumino, Charge orbits of extremal black holes in five dimensional supergravity. Phys. Rev. D82, 085010 (2010). arXiv:1006.3101 Google Scholar
  69. 69.
    E.G. Gimon, F. Larsen, J. Simon, Black holes in supergravity: The non-BPS branch. JHEP 0801, 040 (2008). arXiv:0710.4967 Google Scholar
  70. 70.
    S. Bellucci, S. Ferrara, A. Marrani, A. Yeranyan, stu Black holes unveiled. Entropy 10(4), 507 (2008). arXiv:0807.3503 Google Scholar
  71. 71.
    B.L. Cerchiai, S. Ferrara, A. Marrani, B. Zumino, Duality, entropy and ADM mass in supergravity. Phys. Rev. D79, 125010 (2009). arXiv:0902.3973 Google Scholar
  72. 72.
    L. Borsten, D. Dahanayake, M.J. Duff, S. Ferrara, A. Marrani, W. Rubens. Observations on integral and continuous U -duality orbits in N= 8 supergravity. Class. Quant. Grav. 27, 185003 (2010). arXiv:1002.4223 Google Scholar
  73. 73.
    P.K. Tripathy, S.P. Trivedi, Non-supersymmetric attractors in string theory. JHEP 0603, 022 (2006). hep-th/0511117 Google Scholar
  74. 74.
    P.K. Tripathy, S.P. Trivedi, On the stability of non-supersymmetric attractors in string theory. JHEP 0708, 054 (2007). arXiv:0705.4554 Google Scholar
  75. 75.
    L. Andrianopoli, R. D’Auria, S. Ferrara, Supersymmetry reduction of N extended supergravities in four dimensions. JHEP0203, 025 (2002). hep-th/0110277 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Physics, Theory UnitCERNGeneva 23Switzerland

Personalised recommendations