Lie Supergroups, Unitary Representations, and Invariant Cones

  • Karl-Hermann Neeb
  • Hadi SalmasianEmail author
Part of the Lecture Notes in Mathematics book series (LNM, volume 2027)


The goal of this article is twofold. First, it presents an application of the theory of invariant convex cones of Lie algebras to the study of unitary representations of Lie supergroups. Second, it provides an exposition of recent results of the second author on the classification of irreducible unitary representations of nilpotent Lie supergroups using the method of orbits.


Unitary Representation Cartan Subalgebra Homogeneous Element Irreducible Unitary Representation Coadjoint Orbit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



K.-H. Neeb was supported by DFG-grant NE 413/7-1, Schwerpunktprogramm “Darstellungstheorie.” H. Salmasian was supported by an NSERC Discovery Grant and an Alexander von Humboldt Fellowship for Experienced Researchers.


  1. 1.
    F.A. Berezin, in Introduction to Superanalysis. Mathematical Physics and Applied Mathematics, vol. 9 (D. Reidel Publishing, Dordrecht, 1987), pp. xii+424Google Scholar
  2. 2.
    J. Bochnak, J. Siciak, Analytic functions in topological vector spaces. Studia Math. 39, 77–112 (1971)MathSciNetzbMATHGoogle Scholar
  3. 3.
    N. Bourbaki, in Lie groups and Lie algebras.  Chapters 7 9. Translated from the 1975 and 1982 French originals by Andrew Pressley. Elements of Mathematics (Berlin) (Springer, Berlin, 2005), pp. xii+434
  4. 4.
    C.P. Boyer, O.A. Sánchez-Valenzuela, Lie supergroup actions on supermanifolds. Trans. Am. Math. Soc. 323(1), 151–175 (1991)zbMATHCrossRefGoogle Scholar
  5. 5.
    C. Carmeli, G. Cassinelli, A. Toigo, V.S. Varadarajan, Unitary Representations of Lie supergroups and applications to the classification and multiplet structure of super particles. Commun. Math. Phys. 263, 217–258 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    S.-J. Cheng, Differentiably simple Lie superalgebras and representations of semisimple Lie superalgebras. J. Algebra 173(1), 1–43 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    J.B. Conway, A Course in Functional Analysis. Graduate Texts in Mathematics, vol. 96 (Springer, New York, 1985), pp. xiv+404Google Scholar
  8. 8.
    L.J. Corwin, F.P. Greenleaf, in Representations of Nilpotent Lie Groups and Their Applications. Part I. Basic Theory and Examples. Cambridge Studies in Advanced Mathematics, vol. 18 (Cambridge University Press, Cambridge, 1990), pp. viii+269Google Scholar
  9. 9.
    P. Deligne, J.W. Morgan, Notes on Supersymmetry (Following Joseph Bernstein). Quantum Fields and Strings: A Course for Mathematicians, vols. 1, 2 (Princeton, NJ, 1996/1997) (AMS, RI, 1999), pp. 41–97Google Scholar
  10. 10.
    E. Hewitt, K.A. Ross, Abstract Harmonic Analysis II (Springer, Berlin, 1970)zbMATHGoogle Scholar
  11. 11.
    J. Hilgert, K.-H. Hofmann, Compactly embedded cartan algebras and invariant cones in Lie algebras. Adv. Math. 75, 168–201 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    H.P. Jakobsen, The full set of unitarizable highest weight modules of basic classical Lie superalgebras. Mem. Am. Math. Soc. 111(532), vi+116 (1994)Google Scholar
  13. 13.
    V.G. Kac, Lie superalgebras. Adv. Math. 26(1), 8–96 (1977)zbMATHGoogle Scholar
  14. 14.
    A.A. Kirillov, Unitary representations of nilpotent Lie groups (Russian). Uspehi Mat. Nauk 17(4)(106), 57–110 (1962)Google Scholar
  15. 15.
    A.A. Kirillov, in Lectures on the Orbit Method. Graduate Studies in Mathematics, vol. 64 (AMS, RI, 2004), pp. xx+408Google Scholar
  16. 16.
    B. Kostant, in Graded Manifolds, Graded Lie Theory, and Prequantization. Differential Geometrical Methods in Mathematical Physics (Proc. Sympos., University of Bonn, Bonn, 1975). Lecture Notes in Mathematics, vol. 570 (Springer, Berlin, 1977), pp. 177–306Google Scholar
  17. 17.
    D. Leites, Introduction to the theory of supermanifolds (Russian). Uspekhi Mat. Nauk 35(1)(211), 3–57 (1980)Google Scholar
  18. 18.
    Y.I. Manin, in Gauge Field Theory and Complex Geometry. Translated from the Russian by N. Koblitz, J.R. King. Grundlehren der Mathematischen Wissenschaften, vol. 289 (Springer, Berlin, 1988), pp. x+297Google Scholar
  19. 19.
    K.-H. Neeb, The classification of Lie algebras with invariant cones. J. Lie Theor. 4:2, 1–47 (1994)Google Scholar
  20. 20.
    K.-H. Neeb, in Holomorphy and Convexity in Lie Theory. Expositions in Mathematics, vol. 28 (de Gruyter Verlag, Berlin, 2000)Google Scholar
  21. 21.
    K.-H. Neeb, On differentiable vectors for representations of infinite dimensional Lie groups. J. Funct. Anal. 2010. arXiv:math.RT.1002.1602 (to appear)Google Scholar
  22. 22.
    A. Neumann, The classification of symplectic structures of convex type. Geom. Dedicata 79:3, 299–320 (2000)Google Scholar
  23. 23.
    I. Penkov, Characters of strongly generic irreducible Lie superalgebra representations (English summary). Int. J. Math. 9(3), 331–366 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    I. Penkov, V. Serganova, Generic irreducible representations of finite-dimensional Lie superalgebras. Int. J. Math. 5(3), 389–419 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    N.S. Poulsen, On C vectors and intertwining bilinear forms for representations of Lie groups. J. Funct. Anal. 9, 87–120 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    W. Rudin, Functional Analysis (McGraw Hill, NY, 1973)zbMATHGoogle Scholar
  27. 27.
    H. Salmasian, Unitary representations of nilpotent super Lie groups. Comm. Math. Phys. 297(1), 189–227 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    M. Scheunert, The Theory of Lie Superalgebras. An Introduction. Lecture Notes in Mathematics, vol. 716 (Springer, Berlin, 1979), pp. x+271Google Scholar
  29. 29.
    M. Scheunert, Invariant supersymmetric multilinear forms and the Casimir elements of P-type Lie superalgebras. J. Math. Phys. 28(5), 1180–1191 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    I.E. Segal, Mathematical Cosmology and Extragalactical Astronomy (Academic, New York, 1976)Google Scholar
  31. 31.
    V.V. Serganova, Classification of simple real Lie superalgebras and symmetric superspaces (Russian). Funktsional. Anal. i Prilozhen. 17(3), 46–54 (1983)MathSciNetGoogle Scholar
  32. 32.
    V.S. Varadarajan, in Introduction to Harmonic Analysis on Semisimple Lie Groups. Cambridge Studies in Advanced Mathematics, vol. 16 (Cambridge University Press, Cambridge, 1999), pp. x+316Google Scholar
  33. 33.
    V.S. Varadarajan, in Supersymmetry for Mathematicians: An Introduction. Courant Lecture Notes in Mathematics, vol. 11. New York University, Courant Institute of Mathematical Sciences, New York (AMS, RI, 2004), pp. viii+300Google Scholar
  34. 34.
    E.B. Vinberg, Invariant cones and orderings in Lie groups. Funct. Anal. Appl. 14, 1–13 (1980)MathSciNetzbMATHGoogle Scholar
  35. 35.
    D.A. Vogan Jr., The method of coadjoint orbits for real reductive groups. Representation theory of Lie groups (Park City, UT, 1998), IAS/Park City Math. Ser., vol. 8 (AMS, RI, 2000), pp. 179–238Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department MathematikFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  2. 2.Department of Mathematics and StatisticsUniversity of OttawaOttawaCanada

Personalised recommendations