A Comparison of the Electric Potential through the Membranes of Ganglion Neurons and Neuroblastoma Cells

  • Thiago M. Pinto
  • Roseli S. Wedemann
  • Célia Cortez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6792)


We have modeled the electric potential profile, across the membranes of the ganglion neuron and neuroblastoma cells. We considered the resting and action potential states, and analyzed the influence of fixed charges of the membrane on the electric potential of the surface of the membranes of these cells, based on experimental values of membrane properties. The ganglion neuron portrays a healthy neuron, and the neuroblastoma cell, which is tumorous, represents a pathologic neuron. We numerically solved the non-linear Poisson-Boltzmann equation, by considering the densities of charges dissolved in an electrolytic solution and fixed on both glycocalyx and cytoplasmic proteins. We found important differences among the potential profiles of the two cells.


Membrane model electric potential electrophoresis neuroblastoma 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cortez, C., Bisch, P.: The effect of ionic strength and outer surface charge on the membrane electric potential profile: a simple model for the erythrocyte membrane. Bioelectrochemistry and Bioenergetics 32, 305–315 (1993)CrossRefGoogle Scholar
  2. 2.
    Cortez, C., Cruz, F., Silva, D., Costa, L.: Influence of fixed electric charges on potential profile across the squid axon membrane. Physica B 403, 644–652 (2008)CrossRefGoogle Scholar
  3. 3.
    Cruz, F., Vilhena, F., Cortez, C.: Solution of non-linear Poisson-Boltzmann equation for erythrocyte membrane. Brazilian Journal of Physics 3, 403–409 (2000)CrossRefGoogle Scholar
  4. 4.
    Belan, P., Dolgaya, E., Mironov, S., Tepikin, A.: Relation between the surface potential of mouse neuroblastoma clone c1300 cells and the phase of the cell cycle. Neurophysiology 19(1), 130–133 (1987)Google Scholar
  5. 5.
    Dolgaya, E., Mironov, S., Pogorelaya, N.: Changes in surface charge of mouse neuroblastoma cells during growth and morphological differentiation of the cell population. Neurophysiology 17(2), 168–174 (1985)CrossRefGoogle Scholar
  6. 6.
    Pinto, T.M.: Modelagem do Potencial Elétrico através da Membrana do Neurônio Ganglionar e Células de Neuroblastoma: Efeitos das Cargas Superficiais. Masters Dissertation, Universidade do Estado do Rio de Janeiro, Rio de Janeiro (2010)Google Scholar
  7. 7.
    Mironov, S., Dolgaya, E.: Surface charge of mammalian neurones as revealed by microelectrophoresis. J. Membrane Biol. 86, 197–202 (1985)CrossRefGoogle Scholar
  8. 8.
    Dehlinger, P., Schimke, R.: Size distribution of membrane proteins of rat liver and their relative rates of degradation. J. Biol. Chem. 246(8), 2574–2583 (1971)Google Scholar
  9. 9.
    Schubert, D., Humphreys, S., Jacob, F.: Induced differentiation of a neuroblastoma. Dev. Biol. 25(4), 514–546 (1971)CrossRefGoogle Scholar
  10. 10.
    Gèrard, V., Rouzaire-Dubois, B., Dilda, P.: Alterations of ionic membrane permeabilities in multidrug-resistant neuroblastoma x glioma hybrid cells. J. Exp. Biol. 201, 21–31 (1998)Google Scholar
  11. 11.
    Kuramoto, T., Perez-Polo, J., Haber, B.: Membrane properties of a human neuroblastoma II: Effects of differentiation. J. Neurosci. Res. 6(4), 441–449 (1981)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Thiago M. Pinto
    • 1
  • Roseli S. Wedemann
    • 1
  • Célia Cortez
    • 1
  1. 1.Instituto de Matemática e EstatísticaUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations