Skip to main content

Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 6791)

Abstract

We present a novel convolutional auto-encoder (CAE) for unsupervised feature learning. A stack of CAEs forms a convolutional neural network (CNN). Each CAE is trained using conventional on-line gradient descent without additional regularization terms. A max-pooling layer is essential to learn biologically plausible features consistent with those found by previous approaches. Initializing a CNN with filters of a trained CAE stack yields superior performance on a digit (MNIST) and an object recognition (CIFAR10) benchmark.

Keywords

  • convolutional neural network
  • auto-encoder
  • unsupervised learning
  • classification

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-21735-7_7
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-21735-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Behnke, S.: Hierarchical Neural Networks for Image Interpretation. LNCS, vol. 2766, pp. 1–13. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  2. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In: Neural Information Processing Systems, NIPS (2007)

    Google Scholar 

  3. Cireşan, D.C., Meier, U., Masci, J., Gambardella, L.M., Schmidhuber, J.: High-Performance Neural Networks for Visual Object Classification. ArXiv e-prints, arXiv:1102.0183v1 (cs.AI) (Febuary 2011)

    Google Scholar 

  4. Ciresan, D.C., Meier, U., Masci, J., Schmidhuber, J.: Flexible, high performance convolutional neural networks for image classification. In: International Joint Conference on Artificial Intelligence, IJCAI (to appear 201I)

    Google Scholar 

  5. Coates, A., Lee, H., Ng, A.: An analysis of single-layer networks in unsupervised feature learning. Advances in Neural Information Processing Systems (2010)

    Google Scholar 

  6. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P.: Why Does Unsupervised Pre-training Help Deep Learning? Journal of Machine Learning Research 11, 625–660 (2010)

    MATH  MathSciNet  Google Scholar 

  7. Fukushima, K.: Neocognitron: A self-organizing neural network for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics 36(4), 193–202 (1980)

    CrossRef  MATH  Google Scholar 

  8. Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Comp. 14(8), 1771–1800 (2002)

    CrossRef  MATH  Google Scholar 

  9. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Computation (2006)

    Google Scholar 

  10. Hochreiter, S., Schmidhuber, J.: Feature extraction through LOCOCODE. Neural Computation 11(3), 679–714 (1999)

    CrossRef  Google Scholar 

  11. Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture of monkey striate cortex. The Journal of Physiology 195(1), 215–243 (1968), http://jp.physoc.org/cgi/content/abstract/195/1/215

    CrossRef  Google Scholar 

  12. Krishevsky, A.: Convolutional deep belief networks on CIFAR-2010 (2010)

    Google Scholar 

  13. Krizhevsky, A.: Learning multiple layers of features from tiny images. Master’s thesis, Computer Science Department, University of Toronto (2009)

    Google Scholar 

  14. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

    CrossRef  Google Scholar 

  15. LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., Huang, F.: A tutorial on energy-based learning. In: Bakir, G., Hofman, T., Schölkopf, B., Smola, A., Taskar, B. (eds.) Predicting Structured Data. MIT Press, Cambridge (2006)

    Google Scholar 

  16. Lee, H., Grosse, R., Ranganath, R., Ng, A.Y.: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: Proceedings of the 26th International Conference on Machine Learning, pp. 609–616 (2009)

    Google Scholar 

  17. Lowe, D.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)

    Google Scholar 

  18. Norouzi, M., Ranjbar, M., Mori, G.: Stacks of convolutional Restricted Boltzmann Machines for shift-invariant feature learning. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2735–2742 (June 2009), http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5206577

  19. Ranzato, M., Boureau, Y., LeCun, Y.: Sparse feature learning for deep belief networks. In: Advances in Neural Information Processing Systems, NIPS 2007 (2007)

    Google Scholar 

  20. Ranzato, M., Fu Jie Huang, Y.L.B., LeCun, Y.: Unsupervised learning of invariant feature hierarchies with applications to object recognition. In: Proc. of Computer Vision and Pattern Recognition Conference (2007)

    Google Scholar 

  21. Ranzato, M., Hinton, G.E.: Modeling pixel means and covariances using factorized third-order boltzmann machines. In: Proc. of Computer Vision and Pattern Recognition Conference, CVPR 2010 (2010)

    Google Scholar 

  22. Scherer, D., Müller, A., Behnke, S.: Evaluation of pooling operations in convolutional architectures for object recognition. In: International Conference on Artificial Neural Networks (2010)

    Google Scholar 

  23. Schmidhuber, J.: Learning factorial codes by predictability minimization. Neural Computation 4(6), 863–879 (1992)

    CrossRef  Google Scholar 

  24. Schmidhuber, J., Eldracher, M., Foltin, B.: Semilinear predictability minimization produces well-known feature detectors. Neural Computation 8(4), 773–786 (1996)

    CrossRef  Google Scholar 

  25. Serre, T., Wolf, L., Poggio, T.: Object recognition with features inspired by visual cortex. In: Proc. of Computer Vision and Pattern Recognition Conference (2007)

    Google Scholar 

  26. Simard, P., Steinkraus, D., Platt, J.: Best practices for convolutional neural networks applied to visual document analysis. In: Seventh International Conference on Document Analysis and Recognition, pp. 958–963 (2003)

    Google Scholar 

  27. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and Composing Robust Features with Denoising Autoencoders. In: Neural Information Processing Systems, NIPS (2008)

    Google Scholar 

  28. Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R.: Deconvolutional Networks. In: Proc. Computer Vision and Pattern Recognition Conference, CVPR 2010 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Masci, J., Meier, U., Cireşan, D., Schmidhuber, J. (2011). Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2011. ICANN 2011. Lecture Notes in Computer Science, vol 6791. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21735-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21735-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21734-0

  • Online ISBN: 978-3-642-21735-7

  • eBook Packages: Computer ScienceComputer Science (R0)