Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction

  • Jonathan Masci
  • Ueli Meier
  • Dan Cireşan
  • Jürgen Schmidhuber
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6791)

Abstract

We present a novel convolutional auto-encoder (CAE) for unsupervised feature learning. A stack of CAEs forms a convolutional neural network (CNN). Each CAE is trained using conventional on-line gradient descent without additional regularization terms. A max-pooling layer is essential to learn biologically plausible features consistent with those found by previous approaches. Initializing a CNN with filters of a trained CAE stack yields superior performance on a digit (MNIST) and an object recognition (CIFAR10) benchmark.

Keywords

convolutional neural network auto-encoder unsupervised learning classification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Behnke, S.: Hierarchical Neural Networks for Image Interpretation. LNCS, vol. 2766, pp. 1–13. Springer, Heidelberg (2003)MATHGoogle Scholar
  2. 2.
    Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In: Neural Information Processing Systems, NIPS (2007)Google Scholar
  3. 3.
    Cireşan, D.C., Meier, U., Masci, J., Gambardella, L.M., Schmidhuber, J.: High-Performance Neural Networks for Visual Object Classification. ArXiv e-prints, arXiv:1102.0183v1 (cs.AI) (Febuary 2011)Google Scholar
  4. 4.
    Ciresan, D.C., Meier, U., Masci, J., Schmidhuber, J.: Flexible, high performance convolutional neural networks for image classification. In: International Joint Conference on Artificial Intelligence, IJCAI (to appear 201I)Google Scholar
  5. 5.
    Coates, A., Lee, H., Ng, A.: An analysis of single-layer networks in unsupervised feature learning. Advances in Neural Information Processing Systems (2010)Google Scholar
  6. 6.
    Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P.: Why Does Unsupervised Pre-training Help Deep Learning? Journal of Machine Learning Research 11, 625–660 (2010)MATHMathSciNetGoogle Scholar
  7. 7.
    Fukushima, K.: Neocognitron: A self-organizing neural network for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics 36(4), 193–202 (1980)CrossRefMATHGoogle Scholar
  8. 8.
    Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Comp. 14(8), 1771–1800 (2002)CrossRefMATHGoogle Scholar
  9. 9.
    Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Computation (2006)Google Scholar
  10. 10.
    Hochreiter, S., Schmidhuber, J.: Feature extraction through LOCOCODE. Neural Computation 11(3), 679–714 (1999)CrossRefGoogle Scholar
  11. 11.
    Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture of monkey striate cortex. The Journal of Physiology 195(1), 215–243 (1968), http://jp.physoc.org/cgi/content/abstract/195/1/215 CrossRefGoogle Scholar
  12. 12.
    Krishevsky, A.: Convolutional deep belief networks on CIFAR-2010 (2010)Google Scholar
  13. 13.
    Krizhevsky, A.: Learning multiple layers of features from tiny images. Master’s thesis, Computer Science Department, University of Toronto (2009)Google Scholar
  14. 14.
    LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)CrossRefGoogle Scholar
  15. 15.
    LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., Huang, F.: A tutorial on energy-based learning. In: Bakir, G., Hofman, T., Schölkopf, B., Smola, A., Taskar, B. (eds.) Predicting Structured Data. MIT Press, Cambridge (2006)Google Scholar
  16. 16.
    Lee, H., Grosse, R., Ranganath, R., Ng, A.Y.: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: Proceedings of the 26th International Conference on Machine Learning, pp. 609–616 (2009)Google Scholar
  17. 17.
    Lowe, D.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)Google Scholar
  18. 18.
    Norouzi, M., Ranjbar, M., Mori, G.: Stacks of convolutional Restricted Boltzmann Machines for shift-invariant feature learning. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2735–2742 (June 2009), http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5206577
  19. 19.
    Ranzato, M., Boureau, Y., LeCun, Y.: Sparse feature learning for deep belief networks. In: Advances in Neural Information Processing Systems, NIPS 2007 (2007)Google Scholar
  20. 20.
    Ranzato, M., Fu Jie Huang, Y.L.B., LeCun, Y.: Unsupervised learning of invariant feature hierarchies with applications to object recognition. In: Proc. of Computer Vision and Pattern Recognition Conference (2007)Google Scholar
  21. 21.
    Ranzato, M., Hinton, G.E.: Modeling pixel means and covariances using factorized third-order boltzmann machines. In: Proc. of Computer Vision and Pattern Recognition Conference, CVPR 2010 (2010)Google Scholar
  22. 22.
    Scherer, D., Müller, A., Behnke, S.: Evaluation of pooling operations in convolutional architectures for object recognition. In: International Conference on Artificial Neural Networks (2010)Google Scholar
  23. 23.
    Schmidhuber, J.: Learning factorial codes by predictability minimization. Neural Computation 4(6), 863–879 (1992)CrossRefGoogle Scholar
  24. 24.
    Schmidhuber, J., Eldracher, M., Foltin, B.: Semilinear predictability minimization produces well-known feature detectors. Neural Computation 8(4), 773–786 (1996)CrossRefGoogle Scholar
  25. 25.
    Serre, T., Wolf, L., Poggio, T.: Object recognition with features inspired by visual cortex. In: Proc. of Computer Vision and Pattern Recognition Conference (2007)Google Scholar
  26. 26.
    Simard, P., Steinkraus, D., Platt, J.: Best practices for convolutional neural networks applied to visual document analysis. In: Seventh International Conference on Document Analysis and Recognition, pp. 958–963 (2003)Google Scholar
  27. 27.
    Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and Composing Robust Features with Denoising Autoencoders. In: Neural Information Processing Systems, NIPS (2008)Google Scholar
  28. 28.
    Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R.: Deconvolutional Networks. In: Proc. Computer Vision and Pattern Recognition Conference, CVPR 2010 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jonathan Masci
    • 1
  • Ueli Meier
    • 1
  • Dan Cireşan
    • 1
  • Jürgen Schmidhuber
    • 1
  1. 1.Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA)LuganoSwitzerland

Personalised recommendations