NextPlace: A Spatio-temporal Prediction Framework for Pervasive Systems

  • Salvatore Scellato
  • Mirco Musolesi
  • Cecilia Mascolo
  • Vito Latora
  • Andrew T. Campbell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6696)


Accurate and fine-grained prediction of future user location and geographical profile has interesting and promising applications including targeted content service, advertisement dissemination for mobile users, and recreational social networking tools for smart-phones. Existing techniques based on linear and probabilistic models are not able to provide accurate prediction of the location patterns from a spatio-temporal perspective, especially for long-term estimation. More specifically, they are able to only forecast the next location of a user, but not his/her arrival time and residence time, i.e., the interval of time spent in that location. Moreover, these techniques are often based on prediction models that are not able to extend predictions further in the future.

In this paper we present NextPlace, a novel approach to location prediction based on nonlinear time series analysis of the arrival and residence times of users in relevant places. NextPlace focuses on the predictability of single users when they visit their most important places, rather than on the transitions between different locations. We report about our evaluation using four different datasets and we compare our forecasting results to those obtained by means of the prediction techniques proposed in the literature. We show how we achieve higher performance compared to other predictors and also more stability over time, with an overall prediction precision of up to 90% and a performance increment of at least 50% with respect to the state of the art.


Time Series Access Point Location Prediction Prediction Technique Nonlinear Time Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aalto, L., Göthlin, N., Korhonen, J., Ojala, T.: Bluetooth and WAP Push Based Location-aware Mobile Advertising System. In: Proceedings of MobiSys 2004, pp. 49–58 (2004)Google Scholar
  2. 2.
    Ashbrook, D., Starner, T.: Using GPS to Learn Significant Locations and Predict Movement Across Multiple Users. Journal of Personal and Ubiquitous Computing 7(5), 275–286 (2003)CrossRefGoogle Scholar
  3. 3.
    Balachandran, A., Voelker, G.M., Bahl, P., Rangan, P.V.: Characterizing User Behavior and Network Performance in a Public Wireless LAN. In: Proceedings of SIGMETRICS 2002 (2002)Google Scholar
  4. 4.
    Balazinska, M., Castro, P.: Characterizing Mobility and Network Usage in a Corporate Wireless Local-Area Network. In: Proceedings of MobiSys 2003, San Francisco, CA (May 2003)Google Scholar
  5. 5.
    Chaintreau, A., Hui, P., Crowcroft, J., Diot, C., Gass, R., Scott, J.: Impact of Human Mobility on Opportunistic Forwarding Algorithms. IEEE Transactions on Mobile Computing 6(6), 606–620 (2007)CrossRefGoogle Scholar
  6. 6.
    Chatfield, C.: The Analysis of Time Series: An Introduction, 5th edn. Chapman & Hall/CRC, London (July 1995)zbMATHGoogle Scholar
  7. 7.
    Eagle, N., Pentland, A.S.: Reality Mining: Sensing Complex Social Systems. Personal Ubiquitous Comput. 10(4), 255–268 (2006)CrossRefGoogle Scholar
  8. 8.
    Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.-L.: Understanding Individual Human Mobility Patterns. Nature 453(7196), 779–782 (2008)CrossRefGoogle Scholar
  9. 9.
    Henderson, T., Kotz, D., Abyzov, I.: The Changing Usage of a Mature Campus-wide Wireless Network. In: Proceedings of MobiCom 2004, New York, NY, USA, pp. 187–201 (2004)Google Scholar
  10. 10.
    Jain, S., Fall, K., Patra, R.: Routing in a Delay Tolerant Network. In: Proceedings of SIGCOMM 2004 (2004)Google Scholar
  11. 11.
    Kang, J.H., Welbourne, W., Stewart, B., Borriello, G.: Extracting Places from Traces of Locations. SIGMOBILE Mobile Computing Communication Review 9(3), 58–68 (2005)CrossRefGoogle Scholar
  12. 12.
    Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  13. 13.
    Karagiannis, T., Le Boudec, J.-Y., Vojnovic, M.: Power Law and Exponential Decay of Inter-contact Times Between Mobile Devices. In: Proceedings of MobiCom 2007, pp. 183–194 (2007)Google Scholar
  14. 14.
    Kim, M., Kotz, D., Kim, S.: Extracting a Mobility Model from Real User Traces. In: Proceedings of INFOCOM 2006 (April 2006)Google Scholar
  15. 15.
    Kotz, D., Henderson, T., Abyzov, I.: CRAWDAD trace dartmouth/campus/movement/01_04 (v. 2005-03-08) (March 2005),
  16. 16.
    Krumm, J., Horvitz, E.: Predestination: Inferring Destinations from Partial Trajectories. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 243–260. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    LaMarca, A., Chawathe, Y., Consolvo, S., Hightower, J., Smith, I., Scott, J., Sohn, T., Howard, J., Hughes, J., Potter, F., Tabert, J., Powledge, P., Borriello, G., Schilit, B.: Place Lab: Device Positioning Using Radio Beacons in the Wild. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 116–133. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Lenczner, M., Gregoire, B., Roulx, F.: CRAWDAD data set ilesansfil/wifidog (v. 2007-08-27) (August 2007),
  19. 19.
    Liao, L., Patterson, D.J., Fox, D., Kautz, H.: Building Personal Maps from GPS Data. In: Proceedings of IJCAI Workshop on Modeling Others from Observation (2005)Google Scholar
  20. 20.
    Marmasse, N., Schmandt, C.: Location-Aware Information Delivery with ComMotion. In: Thomas, P., Gellersen, H.-W. (eds.) HUC 2000. LNCS, vol. 1927, pp. 157–171. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  21. 21.
    Miluzzo, E., Lane, N.D., Fodor, K., Peterson, R., Lu, H., Musolesi, M., Eisenman, S.B., Zheng, X., Campbell, A.T.: Sensing Meets Mobile Social Networks: the Design, Implementation and Evaluation of the CenceMe Application. In: Proceedings of SenSys 2008, pp. 337–350. ACM, New York (2008)Google Scholar
  22. 22.
    Monreale, A., Pinelli, F., Trasarti, R., Giannotti, F.: WhereNext: a location predictor on trajectory pattern mining. In: Proceedings of SIGKDD 2009, pp. 637–646. ACM, New York (2009)Google Scholar
  23. 23.
    Nicholson, A.J., Noble, B.D.: BreadCrumbs: Forecasting Mobile Connectivity. In: Proceedings of MobiCom 2008, pp. 46–57. ACM, New York (2008)Google Scholar
  24. 24.
    Piorkowski, M., Sarafijanovic-Djukic, N., Grossglauser, M.: CRAWDAD trace set epfl/mobility/cab (v. 2009-02-24) (February 2009),
  25. 25.
    Schreiber, T.: Efficient Neighbor Searching in Nonlinear Time Series. International Journal on Bifurcations and Chaos 5, 349–358 (1995)CrossRefzbMATHGoogle Scholar
  26. 26.
    Song, L., Deshpande, U., Kozat, U.C., Kotz, D., Jain, R.: Predictability of WLAN Mobility and its Effects on Bandwidth Provisioning. In: Proceedings of INFOCOM 2006 (April 2006)Google Scholar
  27. 27.
    Song, L., Kotz, D.: Evaluating Location Predictors with Extensive Wi-Fi Mobility Data. In: Proceedings of INFOCOM 2004, pp. 1414–1424 (2004)Google Scholar
  28. 28.
    Zhou, C., Frankowski, D., Ludford, P., Shekhar, S., Terveen, L.: Discovering Personally Meaningful Places: An Interactive Clustering Approach. ACM Trans. Inf. Syst. 25(3), 12 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Salvatore Scellato
    • 1
  • Mirco Musolesi
    • 2
  • Cecilia Mascolo
    • 1
  • Vito Latora
    • 3
  • Andrew T. Campbell
    • 4
  1. 1.Computer LaboratoryUniversity of CambridgeUK
  2. 2.School of Computer ScienceUniversity of St. AndrewsUK
  3. 3.Dipartimento di FisicaUniversity of CataniaItaly
  4. 4.Department of Computer ScienceDartmouth CollegeUSA

Personalised recommendations