Skip to main content

Optimization of Multiple Traveling Salesmen Problem by a Novel Representation Based Genetic Algorithm

  • Chapter
Intelligent Computational Optimization in Engineering

Part of the book series: Studies in Computational Intelligence ((SCI,volume 366))

Abstract

The Vehicle Routing Problem (VRP) is a complex combinatorial optimization problem that can be described as follows: given a fleet of vehicles with uniform capacity, a common depot, and several requests by the customers, find a route plan for the vehicles with overall minimum route cost (eg. distance traveled by vehicles), which service all the demands. It is well known that multiple Traveling Salesman Problem (mTSP) based algorithms can also be utilized in several VRPs by incorporating some additional constraints, it can be considered as a relaxation of the VRP, with the capacity restrictions removed. The mTSP is a generalization of the well known traveling salesman problem (TSP), where more than one salesman is allowed to be used in the solution. Because of the fact that TSP is already a complex, namely an NP-hard problem, heuristic optimization algorithms, like genetic algorithms (GAs) need to be taken into account. The extension of classical GA tools for mTSP is not a trivial problem, it requires special, interpretable encoding and genetic operators to ensure efficiency. The aim of this chapter is to review how genetic algorithms can be applied to solve these problems, and propose a novel, easily interpretable and problem-oriented representation and operators, that can easily handle constraints on the tour lengths, and the number of salesmen can vary during the evolution. The elaborated heuristic algorithm is demonstrated by a complete realistic example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ali, A.I., Kennington, J.L.: The asymmetric m-traveling salesmen problem: a duality based branch-and-bound algorithm. Discrete Applied Mathematics 13, 259–276 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Angel, R.D., Caudle, W.L., Noonan, R., Whinston, A.: Computer-assisted school bus scheduling. Management Science 18(6), 279–288 (1972)

    Article  Google Scholar 

  3. Back, T., Fogel, D.B., Michalewicz, Z.: Handbook of evolutionary computation. IOP Publishing Ltd (1997)

    Google Scholar 

  4. Bautista, J., Fernández, E., Pereira, J.: Solving an urban waste collection problem using ants heuristics. Computers & OR 35(9), 3020–3033 (2008)

    Article  MATH  Google Scholar 

  5. Bektas, T.: The multiple traveling salesman problem: an overview of formulations and solution procedures. Omega 34, 209–219 (2006)

    Article  Google Scholar 

  6. Beltrami, E.J.B.: Networks and vehicle routing for municipal waste collection. Networks 4(1), 65–94 (1972)

    Article  Google Scholar 

  7. Bhide, S., John, N., Kabuka, M.R.: A boolean neural network approach for the traveling salesman problem. IEEE Transactions on Computers 42(10), 1271 (1993)

    Article  Google Scholar 

  8. Blickle, T., Thiele, L.: A comparison of selection schemes used in evolutionary algorithms. Evolutionary Computation 4(4), 361–394 (1996)

    Article  Google Scholar 

  9. Carter, A.E., Ragsdale, C.T.: A new approach to solving the multiple traveling salesperson problem using genetic algorithms. European Journal of Operational Research 175, 246–257 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cavill, R., Smith, S., Tyrrell, A.: Multi-chromosomal genetic programming. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, pp. 1753–1759. ACM, New York (2005)

    Chapter  Google Scholar 

  11. Desrosier, J., Sauve, M., Soumis, F.: Lagrangian relaxation methods for solving the minimum fleet size multiple traveling salesman problem with time windows. Management Science 34(8), 1005–1022 (1988)

    Article  MathSciNet  Google Scholar 

  12. Feng, H., Bao, J., Jin, Y.: Particle swarm optimization combined with ant colony optimization for the multiple traveling salesman problem. Materials science forum, Trans. Tech. 626, 717–722 (2009)

    Article  Google Scholar 

  13. Finke, G.: Network flow based branch and bound method for asymmetric traveling salesman problems. In: Symposium, X.I. (ed.) on Operations Research, Darmstadt, pp. 117–119 (1986)

    Google Scholar 

  14. Fox, B., McMahon, M.: Genetic operators for sequencing problems. In: Rawlins, G.J. (ed.) Foundations of Genetic Algorithms, pp. 284–300. Morgan Kaufmann, San Francisco (1991)

    Google Scholar 

  15. Garcia-Martinez, C., Cordón, O., Herrera, F.: A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria tsp. European Journal of Operational Research 180(1), 116–148 (2007)

    Article  MATH  Google Scholar 

  16. Gen, M., Cheng, R.: Genetic algorithms and engineering design. John Wiley and Sons, Inc., New York (1997)

    Google Scholar 

  17. Glover, F.: Artificial intelligence, heuristic frameworks and tabu search. Managerial and Decision Economics 11(5), 365–375 (1990)

    Article  Google Scholar 

  18. Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)

    MATH  Google Scholar 

  19. Gorenstein, S.: Printing press scheduling for multi-edition periodicals. Management Science 16(6), 373–383 (1970)

    Article  Google Scholar 

  20. Gromicho, J., Paixão, J., Bronco, I.: Exact solution of multiple traveling salesman problems. Combinatorial optimization: new frontiers in theory and practice, pp. 291–292 (1992)

    Google Scholar 

  21. Gutin, G., Punnen, A.P.: The Traveling Salesman Problem and Its Variations. Combinatorial Optimization. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  22. Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Cambridge (1975)

    Google Scholar 

  23. Hong, S., Padberg, M.W.: Note on the symmetric multiple traveling salesman problem with fixed charges. Operations Research 25(5), 871–874 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hsu, C.-Y., Tsai, M.-H., Chen, W.-M.: A study of feature-mapped approach to the multiple travelling salesmen problem. In: IEEE International Symposium on Circuits and Systems, vol. 3, pp. 1589–1592 (1991)

    Google Scholar 

  25. Laporte, G., Nobert, Y.: A cutting planes algorithm for the m-salesmen problem. Journal of the Operational Research Society 31, 1017–1023 (1980)

    MathSciNet  MATH  Google Scholar 

  26. Malmborg, C.J.: A genetic algorithm for service level based vehicle scheduling. European Journal of Operational Research 93(1), 121–134 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mathias, K., Whitley, D.: Genetic operators, the fitness landscape and the traveling salesman problem. Parallel Problem Solving from Nature 2, 219–228 (1992)

    Google Scholar 

  28. Miliotis, P.: Using cutting planes to solve the symmetric travelling salesman problem. Mathematical Programming 15(1), 177–188 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nagy, G., Salhi, S.: Heuristic algorithms for single and multiple depot vehicle routing problems with pickups and deliveries. European Journal of Operational Research 162(1), 126–141 (2005)

    Article  MATH  Google Scholar 

  30. Nallusamy, R., Duraiswamy, K., Dhanalaksmi, R., Parthiban, P.: Optimization of non-linear multiple traveling salesman problem using k-means clustering, shrink wrap algorithm and meta-heuristics. International Journal of Nonlinear Science 8(4), 480–487 (2009)

    MathSciNet  Google Scholar 

  31. Park, Y.B.: A hybrid genetic algorithm for the vehicle scheduling problem with due times and time deadlines. International Journal of Productions Economics 73(2), 175–188 (2001)

    Article  Google Scholar 

  32. Pierrot, H.J., Hinterding, R.: Multi-chromosomal genetic programming. In: Sattar, A. (ed.) Canadian AI 1997. LNCS, vol. 1342, pp. 137–146. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  33. Potvin, J.Y.: Genetic algorithms for the traveling salesman problem. Annals of Operations Research 63(3), 337–370 (1996)

    Article  Google Scholar 

  34. Potvin, J.Y.P., Lapalme, G., Rousseau, J.: A generalized k-opt exchange procedure for the mtsp. INFOR 27, 474–481 (1989)

    Google Scholar 

  35. Ronald, S., Kirkby, S.: Compound optimization. solving transport and routing problems with a multi-chromosome genetic algorithm. In: The 1998 IEEE International Conference on Evolutionary Computation, ICEC 1998, pp. 365–370 (1998)

    Google Scholar 

  36. Ross, S.M.: Introduction to Probability Models. Academic Press, New York (1984)

    Google Scholar 

  37. Russell, R.A.: An effective heuristic for the m-tour traveling salesman problem with some side conditions. Operations Research 25(3), 517–524 (1977)

    Article  MATH  Google Scholar 

  38. Saleh, H.A., Chelouah, R.: The design of the global navigation satellite system surveying networks using genetic algorithms. Engineering Applications of Artificial Intelligence 17(1), 111–122 (2003)

    Article  Google Scholar 

  39. Svestka, J.A., Huckfeldt, V.E.: Computational experience with an m-salesman traveling salesman algorithm. Management Science 19(7), 790–799 (1973)

    Article  MATH  Google Scholar 

  40. Tanga, L., Liu, J., Rongc, A., Yanga, Z.: A multiple traveling salesman problem model for hot rolling scheduling in shangai baoshan iron & steel complex. European Journal of Operational Research 124(2), 267–282 (2000)

    Article  Google Scholar 

  41. Yoshiji, F., Yuki, A., Tsuyoshi, Y.: Applying the genetic algorithm with multi-chromosomes to order problems. In: Proceedings of the Annual Conference of JSAI, vol. 13, pp. 468–471 (2001)

    Google Scholar 

  42. Yu, Z., Jinhai, L., Guochang, G., Rubo, Z., Haiyan, Y.: An implementation of evolutionary computation for path planning of cooperative mobile robots. In: Proceedings of the 4th World Congress on Intelligent Control and Automation, pp. 1798–1802 (2002)

    Google Scholar 

  43. Zhang, T., Gruver, W., Smith, M.: Team scheduling by genetic search. In: Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials, vol. 2, pp. 839–844 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Király, A., Abonyi, J. (2011). Optimization of Multiple Traveling Salesmen Problem by a Novel Representation Based Genetic Algorithm. In: Köppen, M., Schaefer, G., Abraham, A. (eds) Intelligent Computational Optimization in Engineering. Studies in Computational Intelligence, vol 366. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21705-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21705-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21704-3

  • Online ISBN: 978-3-642-21705-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics