Skip to main content

Rewriting in Practice

  • Conference paper
  • 551 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 6690)

Abstract

The field of rewriting is broadly concerned with manipulating representations of objects so that we go from a larger representation to a smaller representation. The field of rewriting has contributed some fundamental results within the computer science discipline. This extended abstract explores a few impactful applications of rewriting in the areas of (a) design of algorithms, (b) formal modeling and analysis, and (c) term rewriting and theorem proving.

Research supported in part by the National Science Foundation under grant CSR-EHCS-0834810 and CSR-0917398.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-21691-6_3
  • Chapter length: 3 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-21691-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)

References

  1. Bachmair, L.: Canonical Equational Proofs. Birkhäuser, Basel (1991)

    CrossRef  MATH  Google Scholar 

  2. Bachmair, L., Ganzinger, H.: Buchberger’s algorithm: A constraint-based completion procedure. In: Jouannaud, J.-P. (ed.) CCL 1994. LNCS, vol. 845. Springer, Heidelberg (1994)

    CrossRef  Google Scholar 

  3. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. J. of Logic and Computation 4, 217–247 (1994)

    CrossRef  MATH  Google Scholar 

  4. Bachmair, L., Tiwari, A.: D-bases for polynomial ideals over commutative noetherian rings. In: Ganzinger, H. (ed.) RTA 1996. LNCS, vol. 1103, pp. 113–127. Springer, Heidelberg (1996)

    Google Scholar 

  5. Bachmair, L., Tiwari, A., Vigneron, L.: Abstract congruence closure. J. of Automated Reasoning 31(2), 129–168 (2003)

    CrossRef  MATH  Google Scholar 

  6. Buchberger, B.: A critical-pair completion algorithm for finitely generated ideals in rings. In: Börger, E., Rödding, D., Hasenjaeger, G. (eds.) Rekursive Kombinatorik 1983. LNCS, vol. 171, pp. 137–161. Springer, Heidelberg (1984)

    CrossRef  Google Scholar 

  7. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling of cellular signalling. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 17–41. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  8. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover for program checking. J. of the ACM 52(3), 365–473 (2005)

    CrossRef  MATH  Google Scholar 

  9. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  10. Clavel, M., et al.: Maude: Specification and Programming in Rewriting Logic. In: SRI International, Menlo Park, CA (1999), http://maude.csl.sri.com/manual/

  11. Hlavacek, W.S., et al.: Rules for modeling signal-transduction systems. Sci. STKE 344 (2006), PMID: 16849649

    Google Scholar 

  12. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comp. Physics 22, 403–434 (1976)

    CrossRef  Google Scholar 

  13. Kitano, H.: Systems biology: A brief overview. Science 295, 1662–1664 (2002)

    CrossRef  Google Scholar 

  14. Lincoln, P., Tiwari, A.: Symbolic systems biology: Hybrid modeling and analysis of biological networks. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 660–672. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  15. Orth, J.D., Thiele, I., Palsson, B.O.: What is flux balance analysis? Nature Biotechnology 28, 245–248 (2010)

    CrossRef  Google Scholar 

  16. Priami, C.: Algorithmic systems biology. CACM 52(5), 80–88 (2009)

    CrossRef  Google Scholar 

  17. Talcott, C.L.: Pathway logic. In: Bernardo, M., Degano, P., Tennenholtz, M. (eds.) SFM 2008. LNCS, vol. 5016, pp. 21–53. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  18. Tiwari, A.: An algebraic approach for the unsatisfiability of nonlinear constraints. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 248–262. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  19. Tiwari, A., Talcott, C., Knapp, M., Lincoln, P., Laderoute, K.: Analyzing pathways using SAT-based approaches. In: Anai, H., Horimoto, K., Kutsia, T. (eds.) Ab 2007. LNCS, vol. 4545, pp. 155–169. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tiwari, A. (2011). Rewriting in Practice. In: Ong, L. (eds) Typed Lambda Calculi and Applications. TLCA 2011. Lecture Notes in Computer Science, vol 6690. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21691-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21691-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21690-9

  • Online ISBN: 978-3-642-21691-6

  • eBook Packages: Computer ScienceComputer Science (R0)