Skip to main content

Intestinal Microbiota and Intestinal Disease: Inflammatory Bowel Diseases

  • Chapter
  • First Online:
Beneficial Microorganisms in Multicellular Life Forms
  • 1277 Accesses

Abstract

The two major inflammatory bowel diseases (IBD), Crohn’s disease (CD), and ulcerative colitis (UC) are idiopathic relapsing disorders characterized by chronic inflammation of the gastrointestinal tract. It is increasingly evident that the commensal intestinal microbiota plays a role in the pathogenesis of IBD, as multiple lines of evidence, both from rodent and human studies, support microbial involvement in the etiology of these diseases. In general, it is thought that IBD are driven by an irregular immune response to the commensal microbiota in genetically susceptible individuals. A leading hypothesis, concerning the nature of the role that bacteria play in the pathogenesis of IBD, suggests that the disease state is promoted by dysbiosis, a shift in the balance of healthy microbiota in favor of pro-inflammatory microbial species. Numerous studies have described a reduction in the biodiversity of the Firmicutes phylum in CD patients, particularly clostridial species. This phylogenetic group contains many bacteria that produce butyrate, a short chain fatty acid considered to have anti-inflammatory properties. Moreover, recent data suggest that clostridial species are involved in multiple regulatory processes of the innate immune system. Further research, elucidating the interactions between the gut microbiota and the immune system could potentially provide the key for understanding IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atarashi K, Tanoue T et al (2011) Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331(6015):337–341

    Article  PubMed  CAS  Google Scholar 

  • Baumgart M, Dogan B et al (2007) Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn’s disease involving the ileum. ISME J 1(5):403–418

    Article  PubMed  CAS  Google Scholar 

  • Bibiloni R, Mangold M et al (2006) The bacteriology of biopsies differs between newly diagnosed, untreated, Crohn’s disease and ulcerative colitis patients. J Med Microbiol 55(Pt 8):1141–1149

    Article  PubMed  Google Scholar 

  • Darfeuille-Michaud A, Boudeau J et al (2004) High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology 127(2):412–421

    Article  PubMed  Google Scholar 

  • Diakos C, Prieschl EE et al (2002) Novel mode of interference with nuclear factor of activated T-cells regulation in T-cells by the bacterial metabolite n-butyrate. J Biol Chem 277(27):24243–24251

    Article  PubMed  CAS  Google Scholar 

  • Franchimont D, Vermeire S et al (2004) Deficient host-bacteria interactions in inflammatory bowel disease? The toll-like receptor (TLR)-4 Asp299gly polymorphism is associated with Crohn’s disease and ulcerative colitis. Gut 53(7):987–992

    Article  PubMed  CAS  Google Scholar 

  • Frank DN, St Amand AL et al (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 104(34):13780–13785

    Article  PubMed  CAS  Google Scholar 

  • Gilbert KM, Weigle WO (1993) Th1 cell anergy and blockade in G1a phase of the cell cycle. J Immunol 151(3):1245–1254

    PubMed  CAS  Google Scholar 

  • Girardin SE, Boneca IG et al (2003) Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 278(11):8869–8872

    Article  PubMed  CAS  Google Scholar 

  • Gophna U, Sommerfeld K et al (2006) Differences between tissue-associated intestinal microfloras of patients with Crohn’s disease and ulcerative colitis. J Clin Microbiol 44(11):4136–4141

    Article  PubMed  CAS  Google Scholar 

  • Greenstein RJ (2003) Is Crohn’s disease caused by a mycobacterium? Comparisons with leprosy, tuberculosis, and Johne’s disease. Lancet Infect Dis 3(8):507–514

    Article  PubMed  Google Scholar 

  • Hendrickson BA, Gokhale R et al (2002) Clinical aspects and pathophysiology of inflammatory bowel disease. Clin Microbiol Rev 15(1):79–94

    Article  PubMed  Google Scholar 

  • Hviid A, Svanstrom H et al (2011) Antibiotic use and inflammatory bowel diseases in childhood. Gut 60(1):49–54

    Article  PubMed  Google Scholar 

  • Inohara N, Ogura Y et al (2003) Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. J Biol Chem 278(8):5509–5512

    Article  PubMed  CAS  Google Scholar 

  • Jackson SK, DeLoose A et al (2002) The ability of antigen, but not interleukin-2, to promote n-butyrate-induced T helper 1 cell anergy is associated with increased expression and altered association patterns of cyclin-dependent kinase inhibitors. Immunology 106(4):486–495

    Article  PubMed  CAS  Google Scholar 

  • Joossens M, Huys G et al (2011) Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected relatives. Gut 60:631–637

    Article  PubMed  Google Scholar 

  • Kim SC, Tonkonogy SL et al (2005) Variable phenotypes of enterocolitis in interleukin 10-deficient mice monoassociated with two different commensal bacteria. Gastroenterology 128(4):891–906

    Article  PubMed  CAS  Google Scholar 

  • Kim SC, Tonkonogy SL et al (2007) Dual-association of gnotobiotic IL-10−/− mice with 2 nonpathogenic commensal bacteria induces aggressive pancolitis. Inflamm Bowel Dis 13(12):1457–1466

    Article  PubMed  Google Scholar 

  • Leenen CH, Dieleman LA (2007) Inulin and oligofructose in chronic inflammatory bowel disease. J Nutr 137(11 Suppl):2572S–2575S

    PubMed  CAS  Google Scholar 

  • Loftus EV Jr (2004) Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology 126(6):1504–1517

    Article  PubMed  Google Scholar 

  • Luhrs H, Gerke T et al (2002a) Butyrate inhibits NF-kappaB activation in lamina propria macrophages of patients with ulcerative colitis. Scand J Gastroenterol 37(4):458–466

    Article  PubMed  CAS  Google Scholar 

  • Luhrs H, Kudlich T et al (2002b) Butyrate-enhanced TNFalpha-induced apoptosis is associated with inhibition of NF-kappaB. Anticancer Res 22(3):1561–1568

    PubMed  Google Scholar 

  • Macdonald TT, Monteleone G (2005) Immunity, inflammation, and allergy in the gut. Science 307(5717):1920–1925

    Article  PubMed  CAS  Google Scholar 

  • Macfarlane S, Furrie E et al (2004) Chemotaxonomic analysis of bacterial populations colonizing the rectal mucosa in patients with ulcerative colitis. Clin Infect Dis 38(12):1690–1699

    Article  PubMed  Google Scholar 

  • Manichanh C, Rigottier-Gois L et al (2006) Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 55(2):205–211

    Article  PubMed  CAS  Google Scholar 

  • Ott SJ, Musfeldt M et al (2004) Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 53(5):685–693

    Article  PubMed  CAS  Google Scholar 

  • Quirke P (2001) Antagonist. Mycobacterium avium subspecies paratuberculosis is a cause of Crohn’s disease. Gut 49(6):757–760

    Article  PubMed  CAS  Google Scholar 

  • Roediger WE (1982) Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology 83(2):424–429

    PubMed  CAS  Google Scholar 

  • Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9(5):313–323

    Article  PubMed  CAS  Google Scholar 

  • Sartor RB (2001) Intestinal microflora in human and experimental inflammatory bowel disease. Curr Opin Gastroenterol 17:324–330

    Article  PubMed  CAS  Google Scholar 

  • Sartor RB (2005) Does Mycobacterium avium subspecies paratuberculosis cause Crohn’s disease? Gut 54(7):896–898

    Article  PubMed  Google Scholar 

  • Segain JP, Raingeard de la Bletiere D et al (2000) Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn’s disease. Gut 47(3):397–403

    Article  PubMed  CAS  Google Scholar 

  • Sellon RK, Tonkonogy S et al (1998) Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immun 66(11):5224–5231

    PubMed  CAS  Google Scholar 

  • Sokol H, Seksik P et al (2006) Specificities of the fecal microbiota in inflammatory bowel disease. Inflamm Bowel Dis 12(2):106–111

    Article  PubMed  Google Scholar 

  • Sokol H, Lay C et al (2008a) Analysis of bacterial bowel communities of IBD patients: what has it revealed? Inflamm Bowel Dis 14(6):858–867

    Article  PubMed  Google Scholar 

  • Sokol H, Pigneur B et al (2008b) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA 105(43):16731–16736

    Article  PubMed  CAS  Google Scholar 

  • Sokol H, Seksik P et al (2009) Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis 15(8):1183–1189

    Article  PubMed  CAS  Google Scholar 

  • Tamboli CP, Neut C et al (2004) Dysbiosis in inflammatory bowel disease. Gut 53(1):1–4

    Article  PubMed  CAS  Google Scholar 

  • Tannock GW (2010) The bowel microbiota and inflammatory bowel diseases. Int J Inflam 2010:954051

    PubMed  Google Scholar 

  • Uhlig HH, Powrie F (2009) Mouse models of intestinal inflammation as tools to understand the pathogenesis of inflammatory bowel disease. Eur J Immunol 39(8):2021–2026

    Article  PubMed  CAS  Google Scholar 

  • Vasquez N, Mangin I et al (2007) Patchy distribution of mucosal lesions in ileal Crohn’s disease is not linked to differences in the dominant mucosa-associated bacteria: a study using fluorescence in situ hybridization and temporal temperature gradient gel electrophoresis. Inflamm Bowel Dis 13(6):684–692

    Article  PubMed  Google Scholar 

  • Willing BP, Dicksved J et al (2010) A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology 139(6):1844–1854, e1841

    Article  PubMed  Google Scholar 

  • Xavier RJ, Podolsky DK (2007) Unravelling the pathogenesis of inflammatory bowel disease. Nature 448(7152):427–434

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uri Gophna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kovacs, A., Gophna, U. (2012). Intestinal Microbiota and Intestinal Disease: Inflammatory Bowel Diseases. In: Rosenberg, E., Gophna, U. (eds) Beneficial Microorganisms in Multicellular Life Forms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21680-0_16

Download citation

Publish with us

Policies and ethics