Skip to main content

Probing Astrocyte Function in Fragile X Syndrome

  • Chapter
  • First Online:
Modeling Fragile X Syndrome

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 54))

Abstract

Astrocytes have been recognized as a class of cells that fill the space between neurons for more than a century. From their humble beginnings in the literature as merely space filling cells, an ever expanding list of functions in the CNS now exceeds the list of functions performed by neurons. In virtually all developmental and pathological conditions in the brain, astrocytes are involved in some capacity that directly affects neuronal function. Today we recognize that astrocytes are involved in the development and function of synaptic communication. Increasing evidence suggests that abnormal synaptic function may be a prominent contributing factor to the learning disability phenotype. With the discovery of FMRP in astrocytes, coupled with a role of astrocytes in synaptic function, research directed to glial neurobiology has never been more important. This chapter highlights the current knowledge of astrocyte function with a focus on their involvement in Fragile X syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott NJ (2000) Inflammatory mediators and modulation of blood-brain barrier permeability. Cell Mol Neurobiol 20:131–147

    Article  PubMed  CAS  Google Scholar 

  • Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Buylla A, Garcia-Verdugo JM, Tramontin AD (2001) A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2:287–293

    Article  PubMed  CAS  Google Scholar 

  • Attwell D, Buchan AM, Charpak S, Lauritzen M, MacVicar BA, Newman EA (2010) Glial and neuronal control of brain blood flow. Nature 468:232–243

    Article  PubMed  CAS  Google Scholar 

  • Ballas N, Lioy DT, Grunseich C, Mandel G (2009) Non-cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology. Nat Neurosci 12:311–317

    Article  PubMed  CAS  Google Scholar 

  • Barker AJ, Ullian EM (2010) Astrocytes and synaptic plasticity. Neuroscientist 16:40–50

    Article  PubMed  Google Scholar 

  • Barkho BZ, Song H, Aimone JB, Smrt RD, Kuwabara T, Nakashima K, Gage FH, Zhao X (2006) Identification of astrocyte-expressed factors that modulate neural stem/progenitor cell differentiation. Stem Cells Dev 15:407–421

    Article  PubMed  CAS  Google Scholar 

  • Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK, Von Zastrow M, Beattie MS, Malenka RC (2002) Control of synaptic strength by glial TNFalpha. Science 295:2282–2285

    Article  PubMed  CAS  Google Scholar 

  • Bergami M, Santi S, Formaggio E, Cagnoli C, Verderio C, Blum R, Berninger B, Matteoli M, Canossa M (2008) Uptake and recycling of pro-BDNF for transmitter-induced secretion by cortical astrocytes. J Cell Biol 183:213–221

    Article  PubMed  CAS  Google Scholar 

  • Bezzi P, Gundersen V, Galbete JL, Seifert G, Steinhauser C, Pilati E, Volterra A (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 7:613–620

    Article  PubMed  CAS  Google Scholar 

  • Blondel O, Collin C, McCarran WJ, Zhu S, Zamostiano R, Gozes I, Brenneman DE, McKay RD (2000) A glia-derived signal regulating neuronal differentiation. J Neurosci 20:8012–8020

    PubMed  CAS  Google Scholar 

  • Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22:183–192

    PubMed  CAS  Google Scholar 

  • Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA et al (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264–278

    Article  PubMed  CAS  Google Scholar 

  • Chiasson BJ, Tropepe V, Morshead CM, van der Kooy D (1999) Adult mammalian forebrain ependymal and subependymal cells demonstrate proliferative potential, but only subependymal cells have neural stem cell characteristics. J Neurosci 19:4462–4471

    PubMed  CAS  Google Scholar 

  • Chotard C, Salecker I (2004) Neurons and glia: team players in axon guidance. Trends Neurosci 27:655–661

    Article  PubMed  CAS  Google Scholar 

  • Christopherson KS, Ullian EM, Stokes CCA, Mullowney CE, Hell JW, Agah A, Lawler J, Mosher DF, Bornstein P, Barres BA (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120:421–433

    Article  PubMed  CAS  Google Scholar 

  • Chung RS, Hidalgo J, West AK (2008) New insight into the molecular pathways of metallothionein-mediated neuroprotection and regeneration. J Neurochem 104:14–20

    PubMed  CAS  Google Scholar 

  • Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716

    Article  PubMed  CAS  Google Scholar 

  • Dong Y, Benveniste EN (2001) Immune function of astrocytes. Glia 36:180–190

    Article  PubMed  CAS  Google Scholar 

  • Eroglu C, Barres BA (2010) Regulation of synaptic connectivity by glia. Nature 468:223–231

    Article  PubMed  CAS  Google Scholar 

  • Ethell IM, Pasquale EB (2005) Molecular mechanisms of dendritic spine development and remodeling. Prog Neurobiol 75:161–205

    Article  PubMed  CAS  Google Scholar 

  • Farina C, Aloisi F, Meinl E (2007) Astrocytes are active players in cerebral innate immunity. Trends Immunol 28:138–145

    Article  PubMed  CAS  Google Scholar 

  • Fellin T, Pascual O, Haydon PG (2006) Astrocytes coordinate synaptic networks: balanced excitation and inhibition. Physiology 21:208–215

    Article  PubMed  CAS  Google Scholar 

  • Freeman MR (2010) Specification and morphogenesis of astrocytes. Science 330:774–778

    Article  PubMed  CAS  Google Scholar 

  • Ganat YM, Silbereis J, Cave C, Ngu H, Anderson GM, Ohkubo Y, Ment LR, Vaccarino FM (2006) Early postnatal astroglial cells produce multilineage precursors and neural stem cells in vivo. J Neurosci 26:8609–8621

    Article  PubMed  CAS  Google Scholar 

  • Garrett AM, Weiner JA (2009) Control of CNS synapse development by γ-protocadherin-mediated astrocyte–neuron contact. J Neurosci 38:11723–11731

    Article  Google Scholar 

  • Geshwind DH (2008) Autism: many genes, common pathways? Cell 135:391–395

    Article  Google Scholar 

  • Goldman S (2003) Glia as neural progenitor cells. Trends Neurosci 26:590–596

    Article  PubMed  CAS  Google Scholar 

  • Gritti A, Bonfanti L, Doetsch F, Caille I, Alvarez-Buylla A, Lim DA, Galli R, Verdugo JM, Herrera DG, Vescovi AL (2002) Multipotent neural stem cells reside into the rostral extension and olfactory bulb of adult rodents. J Neurosci 22:437–445

    PubMed  CAS  Google Scholar 

  • Haber M, Zhou L, Murai KK (2006) Cooperative astrocyte and dendritic spine dynamics at hippocampal excitatory synapses. J Neurosci 26:8881–8891

    Article  PubMed  CAS  Google Scholar 

  • Halassa MM, Fellin T, Takano H, Dong JH, Haydon PG (2007) Synaptic islands defined by the territory of a single astrocyte. J Neurosci 27:6473–6477

    Article  PubMed  CAS  Google Scholar 

  • Hama H, Hara C, Yamaguchi K, Miyawaki A (2004) PKC signaling mediates global enhancement of excitatory synaptogenesis in neurons triggered by local contact with astrocytes. Neuron 41:405–415

    Article  PubMed  CAS  Google Scholar 

  • Haseloff RF, Blasig IE, Bauer HC, Bauer H (2005) In search of the astrocytic factor(s) modulating blood-brain barrier functions in brain capillary endothelial cells in vitro. Cell Mol Neurobiol 25:25–39

    Article  PubMed  CAS  Google Scholar 

  • Haydon PG (2001) Glia: listening and talking to the synapse. Nat Rev Neurosci 2:185–193

    Article  PubMed  CAS  Google Scholar 

  • Hochstim C, Deneen B, Lukaszewicz A, Zhou Q, Anderson DJ (2008) Identification of positionally distinct astrocyte subtypes whose identities are specified by a homeodomain code. Cell 133:510–522

    Article  PubMed  CAS  Google Scholar 

  • Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 5:347–360

    Article  PubMed  CAS  Google Scholar 

  • Iadecola C, Nedergaard M (2007) Glial regulation of the cerebral microvasculature. Nat Neurosci 10:1369–1376

    Article  PubMed  CAS  Google Scholar 

  • Jacobs S, Doering LC (2009) Primary dissociated astrocyte and neuron co-culture. In: Doering LC (ed) Protocols for neural cell culture, 4th edn. Humana, New York, pp 269–284

    Chapter  Google Scholar 

  • Jacobs S, Doering LC (2010) Astrocytes prevent abnormal neuronal development in the Fragile X mouse. J Neurosci 30:4508–4514

    Article  PubMed  CAS  Google Scholar 

  • Jacobs S, Nathwani M, Doering LC (2010) Fragile X astrocytes induce developmental delays in dendrite maturation and synaptic protein expression. BMC Neurosci 11:132

    Article  PubMed  Google Scholar 

  • Kettenman H, Ransom BR (2005) The concept of neuroglia: a historical perspective. In: Kettenmann H, Ransom BR (eds) Neuroglia, 2nd edn. Oxford University Press, Oxford, pp 1–18

    Google Scholar 

  • Kettenmann H, Verkhratsky A (2008) Neuroglia: the 150 years after. Trends Neurosci 31:653–659

    Article  PubMed  CAS  Google Scholar 

  • Kimelberg HK (2007) Supportive or information-processing functions of the mature protoplasmic astrocyte in the mammalian CNS? A critical appraisal. Neuron Glia Biol 3:181–189

    Article  PubMed  Google Scholar 

  • Kimelberg HK (2010) Functions of mature mammalian astrocytes: a current view. Neuroscientist 16:79

    Article  PubMed  CAS  Google Scholar 

  • Koehler RC, Roman RJ, Harder DR (2009) Astrocytes and the regulation of cerebral blood flow. Trends Neurosci 32:160–169

    Article  PubMed  CAS  Google Scholar 

  • Lie DC, Colamarino SA, Song HJ, Desire L, Mira H, Consiglio A, Lein ES, Jessberger S, Lansford H, Dearie AR, Gage FH (2005) Wnt signalling regulates adult hippocampal neurogenesis. Nature 473:1370–1375

    Article  Google Scholar 

  • Magini G (1888) Sur la nevroglie et les cellules nerveuses cerebrales chez les foetus. Arch Ital Biol 9:59–60

    Google Scholar 

  • Maragakis NJ, Rothstein JD (2006) Mechanisms of disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol 2:679–689

    Article  PubMed  CAS  Google Scholar 

  • Mauch DH, Nagler K, Schumacher S, Goritz C, Muller EC, Otto A, Pfrieger FW (2001) CNS synaptogenesis promoted by glia-derived cholesterol. Science 294:1354–1357

    Article  PubMed  CAS  Google Scholar 

  • Murai KK, Nguyen LN, Irie F, Yamaguchi Y, Pasquale EB (2003) Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nat Neurosci 6:153–160

    Article  PubMed  CAS  Google Scholar 

  • Nishida H, Okabe S (2007) Direct astrocytic contacts regulate local maturation of dendritic spines. J Neurosci 27:331–340

    Article  PubMed  CAS  Google Scholar 

  • Oberheim NA, Wang X, Goldman S, Nedergaard M (2006) Astrocytic complexity distinguishes the human brain. Trends Neurosci 29:547–553

    Article  PubMed  CAS  Google Scholar 

  • Ogata K, Kosaka T (2002) Structural and quantitative analysis of astrocytes in the mouse hippocampus. Neuroscience 113:221–233

    Article  PubMed  CAS  Google Scholar 

  • Pacey LKK, Doering LC (2007) Developmental expression of FMRP in the astrocyte lineage: implications for Fragile X syndrome. Glia 55:1601–1609

    Article  PubMed  Google Scholar 

  • Paixao S, Klein R (2010) Neuron–astrocyte communication and synaptic plasticity. Curr Opin Neurobiol 20:466–473

    Article  PubMed  CAS  Google Scholar 

  • Pellerin L, Bouzier-Sore AK, Aubert A, Serres S, Merle M, Costalat R, Magistretti PJ (2007) Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 55:1251–1262

    Article  PubMed  Google Scholar 

  • Pfeiffer BE, Huber KM (2009) The state of synapses in Fragile X syndrome, Neuroscientist 15:549–567

    Article  Google Scholar 

  • Pfeiffer BE, Huber KM (2010) The state of synapses in Fragile X syndrome. Neuroscientist 15:549–567

    Article  Google Scholar 

  • Pfrieger FW, Barres BA (1997) Synaptic efficacy enhanced by glial cells in vitro. Science 277:1684–1687

    Article  PubMed  CAS  Google Scholar 

  • Porras OH, Ruminot I, Loaiza A, Barros LF (2008) Na(+)–Ca(2+) cosignaling in the stimulation of the glucose transporter GLUT1 in cultured astrocytes. Glia 56:59–68

    Article  PubMed  Google Scholar 

  • Porter JT, McCarthy KD (1997) Astrocytic neurotransmitter receptors in situ and in vivo. Prog Neurobiol 51:439–455

    Article  PubMed  CAS  Google Scholar 

  • Ramon y Cajal S (1899) Textura del sistema nerviose del hombre y vertebrados. Moya, Madrid

    Google Scholar 

  • Retzius G (1893) Studien uber Ependym und Neuroglia, vol 5. Bio ntersuch, Stockholm, pp 9–26

    Google Scholar 

  • Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    Article  PubMed  CAS  Google Scholar 

  • Schipke CG, Kettenmann H (2004) Astrocyte responses to neuronal activity. Glia 47:226–232

    Article  PubMed  Google Scholar 

  • Schousboe A, Waagepetersen HS (2004) Role of astrocytes in homeostasis of glutamate and GABA during physiological and pathophysiological conditions. Adv Mol Cell Biol 31:461–474

    Article  CAS  Google Scholar 

  • Slezak M, Pfrieger FW (2003) New roles for astrocytes: regulation of CNS synaptogenesis. Trends Neurosci 26:531–535

    Article  PubMed  CAS  Google Scholar 

  • Somjen GG (1988) Nervenkitt: notes on the history of the concept of neuroglia. Glia 1:2–9

    Article  PubMed  CAS  Google Scholar 

  • Struzynska L, Bubko I, Walski M, Rafalowska U (2001) Astroglial reaction during the early phase of acute lead toxicity in the adult rat brain. Toxicology 165:121–131

    Article  PubMed  CAS  Google Scholar 

  • Sudhof TC (2008) Neuroligins and neurexins link synaptic function to congitive disease. Nature 455:903–911.

    Article  PubMed  Google Scholar 

  • Takano T, Tian GF, Peng W, Lou N, Libionka W, Han X, Nedergaard M (2006) Astrocyte mediated control of cerebral blood flow. Nat. Neurosci 9:260–267

    Article  PubMed  CAS  Google Scholar 

  • Ullian EM, Sapperstein SK, Christopherson KS, Barres BA (2001) Control of synapse number by glia. Science 291:657–661

    Article  PubMed  CAS  Google Scholar 

  • Ullian EM, Christopherson KS, Barres B (2004) Role for glia in synaptogenesis. Glia 47:209–216

    Article  PubMed  Google Scholar 

  • Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6:626–640

    Article  PubMed  CAS  Google Scholar 

  • von Lenhossek M (1891) Zur Kenntnis der Neuroglia des menschlichen Ruckenmarkes. Verh Anat Ges 5:193–221

    Google Scholar 

  • von Lenhossek M (1893) Der feinere Bau des Nervensystems im Lichte neuester Forschung. Fischer’s Medicinische Buchhandlung H Kornfield, Berlin

    Google Scholar 

  • von Lenhossek M (1895) Centrosom and Sphare in den Spinalganglienzellen des Frosches. Arch mirk Anat 46:345–369

    Article  Google Scholar 

  • Walsh CA, Morrow EM, Rubenstein JLR (2008) Autism and brain development. Cell 135:396–400

    Article  PubMed  CAS  Google Scholar 

  • Walz W (1989) Role of glial cells in the regulation of the brain microenvironment. Prog Neurobiol 33:309–333

    Article  PubMed  CAS  Google Scholar 

  • Wang DD, Bordey A (2008) The astrocyte odyssey. Prog Neurobiol 86:342–367

    PubMed  CAS  Google Scholar 

  • Walz W (2000) Controversy surrounding the existence of discrete functional classes of astrocytes in adult gray matter. Glia 31:95–103

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Ku L, Osterhout DJ, Li W, Ahmadian A, Liang Z, Feng Y (2004) Developmentally-programmed FMRP expression in oligodendrocytes: a potential role of FMRP in regulating translation in oligodendroglia progenitors. Hum Mol Genet 13:79–89

    Article  PubMed  CAS  Google Scholar 

  • Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, Carmignoto G (2003) Neuron-to-astrocytes signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6:43–50

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurie C. Doering .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jacobs, S., Cheng, C., Doering, L.C. (2012). Probing Astrocyte Function in Fragile X Syndrome. In: Denman, R. (eds) Modeling Fragile X Syndrome. Results and Problems in Cell Differentiation, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21649-7_2

Download citation

Publish with us

Policies and ethics