Advertisement

Quality Evaluation and Improvement Framework for Database Schemas - Using Defect Taxonomies

  • Jonathan Lemaitre
  • Jean-Luc Hainaut
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6741)

Abstract

Just like any software artefact, database schemas can (or should) be evaluated against quality criteria such as understandability, expressiveness, maintainability and evolvability. Most quality evaluation approaches rely on global metrics counting simple pattern instances in schemas. Recently, we have developed a new approach based on the identification of semantic classes of definite patterns. The members of a class are proved to be semantically equivalent (through the use of semantics preserving transformations) but are assigned different quality scores according to each criteria. In this paper, we explore in more detail the concept of bad pattern by proposing an intuitive taxonomy of defective patterns together with, for each of them, a better alternative. We identify four main classes of defects, namely complex constructs, redundant constructs, foreign constructs and irregular constructs. For each of them, we develop some representative examples and we discuss ways of improvement against three quality criteria: simplicity, expressiveness and evolvability. This taxonomy makes it possible to apply the framework to quality assessment and improvement in a simple and intuitive way.

Keywords

Conceptual data schema quality schema improvement schema evaluation schema transformation 

References

  1. 1.
    Lemaitre, J., Hainaut, J.L.: Transformation-based framework for the evaluation and improvement of database schemas. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp. 317–331. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Hainaut, J.L.: Bases de données: Concepts, utilisation et développement. Dunod (2009)Google Scholar
  3. 3.
    McBrien, P., Poulovassilis, A.: A formal framework for er schema transformation. In: Embley, D.W. (ed.) ER 1997. LNCS, vol. 1331, pp. 408–421. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  4. 4.
    Codd, E.F.: Normalized data structure: A brief tutorial. In: SIGFIDET Workshop, pp. 1–17. ACM, New York (1971)CrossRefGoogle Scholar
  5. 5.
    Burton-Jones, A., Weber, R.: Understanding relationships with attributes in entity-relationship diagrams. In: ICIS 1999: Proc. of the 20th International Conference on Information Systems, Atlanta, GA, USA. Association for Information Systems, pp. 214–228 (1999)Google Scholar
  6. 6.
    Gemino, A., Wand, Y.: Complexity and clarity in conceptual modeling: comparison of mandatory and optional properties. Data Knowl. Eng. 55(3), 301–326 (2005)CrossRefGoogle Scholar
  7. 7.
    Assenova, P., Johannesson, P.: Improving quality in conceptual modelling by the use of schema transformations. In: Thalheim, B. (ed.) ER 1996. LNCS, vol. 1157, pp. 277–291. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  8. 8.
    Rauh, O., Stickel, E.: Standard transformations for the normalization of er schemata. In: CAiSE, pp. 313–326. Springer, Heidelberg (1995)Google Scholar
  9. 9.
    Hainaut, J.L.: The transformational approach to database engineering. In: Lämmel, R., Saraiva, J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp. 95–143. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Davis, A., Overmyer, S., Jordan, K., Caruso, J., Dandashi, F., Dinh, A., Kincaid, G., Ledeboer, G., Reynolds, P., Sitaram, P., Ta, A., Theofanos, M.: Identifying and measuring quality in a software requirements specification. In: Proceedings of the First International Software Metrics Symposium, pp. 141–152 (1993)Google Scholar
  11. 11.
    Moody, D.L., Shanks, G.G.: Improving the quality of data models: empirical validation of a quality management framework. Inf. Syst. 28(6), 619–650 (2003)CrossRefzbMATHGoogle Scholar
  12. 12.
    ISO/IEC: ISO 9126-1:2001, Software engineering - Product quality, Part 1: Quality model. ISO/IEC (2001)Google Scholar
  13. 13.
    Bansiya, J., Davis, C.G.: A hierarchical model for object-oriented design quality assessment. IEEE Trans. Software Eng. 28(1), 4–17 (2002)CrossRefGoogle Scholar
  14. 14.
    ISO/IEC: Software Engineering – Software product Quality Requirements and Evaluation (SQuaRE) – Guide to SQuaRE. ISO/IEC (2005)Google Scholar
  15. 15.
    Si-Said Cherfi, S., Akoka, J., Comyn-Wattiau, I.: Perceived vs. measured quality of conceptual schemas: An experimental comparison. In: ER (Tutorials, Posters, Panels & Industrial Contributions), Australian Computer Society, pp. 185–190 (2007) Google Scholar
  16. 16.
    Batini, C., Ceri, S., Navathe, S.B.: Conceptual database design: An Entity-relationship approach. Benjamin-Cummings Publishing Co., Inc., Redwood City (1992)Google Scholar
  17. 17.
    Hainaut, J.-L.: Hierarchical data model. In: Encyclopedia of Database Systems, pp. 1294–1300 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jonathan Lemaitre
    • 1
  • Jean-Luc Hainaut
    • 1
  1. 1.Laboratory of Database Application Engineering - PReCISE research Center Faculty of Computer ScienceUniversity of NamurNamurBelgium

Personalised recommendations