ONTECTAS: Bridging the Gap between Collaborative Tagging Systems and Structured Data

  • Ali Moosavi
  • Tianyu Li
  • Laks V. S. Lakshmanan
  • Rachel Pottinger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6741)


Ontologies define a set of terms and the relationships (e.g., is-a and has-a) between them; they are the building block of the emerging semantic web. An ontology relating the tags in a collaborative tagging system (CTS) makes the CTS easier to understand. We propose an algorithm to automatically construct an ontology from CTS data and conduct a detailed empirical comparison with previous related work on four real data sets –, LibraryThing, CiteULike, and IMDb. We also verify the effectiveness of our algorithm in detecting is-a and has-a relationships.


ontology taxonomy tag collaborative tagging systems 


  1. 1.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: VLDB, pp. 487–499 (1994)Google Scholar
  2. 2.
    An, Y.J., Geller, J., Wu, Y.-T., Chun, S.A.: Automatic generation of ontology from the deep web. In: Database and Expert Systems Applications (2007)Google Scholar
  3. 3.
    Barla, M., Bieliková, M.: On deriving tagsonomies: Keyword relations coming from crowd. In: Conference on Computational Collective Intelligence (2009)Google Scholar
  4. 4.
    Berland, M., Charniak, E.: Finding parts in very large corpora. In: Annual Meeting of the Association for Computational Linguistics, pp. 57–64 (1999)Google Scholar
  5. 5.
    Eda, T., Yoshikawa, M., Uchiyama, T.: The effectiveness of latent semantic analysis for building up a bottom-up taxonomy from folksonomy tags. World Wide Web 12(4), 421–440 (2009)Google Scholar
  6. 6.
    Girju, R., Badulescu, A., Moldovan, D.: Automatic discovery of part-whole relations. Comput. Linguist. 32(1), 83–135 (2006)Google Scholar
  7. 7.
    Golder, S., Huberman, B.A.: The structure of collaborative tagging systems. Journal of Information Science 32(2), 198–208 (2005)CrossRefGoogle Scholar
  8. 8.
    Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data Mining and Knowledge Discovery 8(1), 53–87 (2004)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In: Conference on Computational linguistics, pp. 539–545 (1992)Google Scholar
  10. 10.
    Heymann, Garcia-Molina.: Collaborative creation of communal hierarchical taxonomies in social tagging systems. Technical Report 2006-10, Stanford (2006)Google Scholar
  11. 11.
    Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: BibSonomy: A social bookmark and publication sharing system. In: Conceptual Structures Tool Interoperability Workshop at the International Conference on Conceptual Structures (2006)Google Scholar
  12. 12.
    Keller, F., Lapata, M.: Using the web to obtain frequencies for unseen bigrams. Computational Linguistics 29(3), 459–484 (2003)CrossRefGoogle Scholar
  13. 13.
    Keller, F., Lapata, M., Ourioupina, O.: Using the web to overcome data sparseness. In: ACL Conference on Empirical Methods in NLP, pp. 230–237 (2002)Google Scholar
  14. 14.
    Körner, C., Benz, D., Hotho, A., Strohmaier, M., Stumme, G.: Stop thinking, start tagging: tag semantics emerge from collaborative verbosity. In: WWW (2010)Google Scholar
  15. 15.
    Kruse, P.M., Naujoks, A., Rsner, D., Kunze, M.: Clever search: A wordnet based wrapper for internet search engines. In: Proceedings of the 2nd GermaNet Workshop (2005)Google Scholar
  16. 16.
    Laniado, D., Eynard, D., Colombetti, M.: Using wordnet to turn a folksonomy into a hierarchy of concepts. In: Semantic Web Application and Perspectives - Fourth Italian Semantic Web Workshop, pp. 192–201 (December 2007)Google Scholar
  17. 17.
    Lapata, M., Keller, F.: Web-based models for natural language processing. ACM Transactions on Speech and Language Processing 2, 1–31 (2005)CrossRefGoogle Scholar
  18. 18.
    Lin, H., Davis, J., Zhou, Y.: An integrated approach to extracting ontological structures from folksonomies. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 654–668. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Liu, K., Fang, B., Zhang, W.: Ontology emergence from folksonomies. In: CIKM, pp. 1109–1118 (2010)Google Scholar
  20. 20.
    Moosavi, A., Li, T., Lakshmanan, L.V., Pottinger, R.: ONTECTAS: Bridging the gap between collaborative tagging systems and structured data (full version),
  21. 21.
    Sánchez, D., Moreno, A.: Learning non-taxonomic relationships from web documents for domain ontology construction. DKE 64(3), 600–623 (2008)CrossRefGoogle Scholar
  22. 22.
    Schmitz, C., Hotho, A., Jäschke, R., Stumme, G.: Mining association rules in folksonomies. In: Classification, Data Analysis, and Knowledge Organization (2006)Google Scholar
  23. 23.
    Schmitz, P.: Inducing ontology from flickr tags. In: Collaborative Web Tagging Workshop at WWW (2006)Google Scholar
  24. 24.
    Schwarzkopf, E., Heckmann, D., Dengler, D., Kroner, E.: Mining the structure of tag spaces for user modeling. In: Wkshp. on Data Mining for User Model. (2007)Google Scholar
  25. 25.
    Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: WWW, pp. 697–706 (2007)Google Scholar
  26. 26.
    Zhu, X., Rosenfeld, R.: Improving trigram language modeling with the world wide web. In: Acoustics, Speech, and Signal Processing, pp. 533–536 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ali Moosavi
    • 1
  • Tianyu Li
    • 1
  • Laks V. S. Lakshmanan
    • 1
  • Rachel Pottinger
    • 1
  1. 1.University of British ColumbiaVancouverCanada

Personalised recommendations