Skip to main content

On the Origin of Phosphorylated Biomolecules

Abstract

Phosphorus is a key element in biology, serving in cellular replication, metabolism, and structure. The versatility of phosphorus in biology is due to several unique chemical characteristics that rely on its electronic structure and geochemical abundance. The formation of phosphorylated biomolecules and their activated precursors have hence been a major focus of prebiotic syntheses for the past 50 years. This chapter highlights the basic chemical and physical features that make phosphorus chemicals so valuable within contemporary biochemistry, the putative prebiotic routes to phosphorylated biomolecules, and a growing role for reduced oxidation state phosphorus compounds, including those derived from meteorites, in the development of life on the Earth. We distinguish three primary forms of biological phosphates that form an energetic hierarchy: (i) stable phosphorylated biomolecules that are unreactive and in which the P provides a structural or binding handle; (ii) energetic condensed phosphates including ATP which store metabolic energy; and (iii) reactive phosphorylated biomolecules which are generated during metabolism and transfer phosphates and energy to condensed phosphates for energy storage. We suggest here that: (1) precursors to modern biologic phosphates likely included reduced oxidation state phosphorus compounds; (2) ATP as the main metabolic energy transfer agent likely arose well after the origin of life, and was likely co-opted from its role as a RNA building block into its metabolic role.

Keywords

  • Acetic Anhydride
  • Phosphate Mineral
  • Organophosphorus Compound
  • Iron Meteorite
  • Phosphorylation Reaction

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-21625-1_3
  • Chapter length: 28 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-21625-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 3.1
Fig. 3.2
Fig. 3.3
Fig. 3.4

References

  • Ahn KH, Kornberg A (1990) Polyphosphate kinase from Escherichia coli – purification and demonstration of a phosphoenzyme intermediate. J Biol Chem 265:11734–11739

    PubMed  CAS  Google Scholar 

  • Arrhenius G, Sales B, Mojzsis S, Lee T (1997) Entropy and charge in molecular evolution – the case of phosphate. J Theor Biol 187:503–522

    PubMed  CAS  CrossRef  Google Scholar 

  • Baltscheffsky M, Schultz A, Baltscheffsky H (1999) H+-proton-pumping inorganic pyrophosphatase: a tightly membrane-bound family. FEBS Lett 452:121–127

    PubMed  CAS  CrossRef  Google Scholar 

  • Batrakov SG, Nikitin DI, Mosezhnyi AE, Ruzhitsky AO (1999) A glycine-containing phosphorus-free lipoaminoacid from the gram-negative marine bacterium Cyclobacterium marinus WH. Chem Phys Lipids 99:139–143

    CAS  CrossRef  Google Scholar 

  • Bean HD, Anet FAL, Gould IR, Hud NV (2006) Glyoxylate as a backbone linkage for a prebiotic ancestor of RNA. Orig Life Evol Biosph 36:39–63

    PubMed  CAS  CrossRef  Google Scholar 

  • Beck A, Orgel LE (1965) The formation of condensed phosphate in aqueous solution. Proc Natl Acad Sci USA 54:664–667

    PubMed  CAS  CrossRef  Google Scholar 

  • Benitez-Nelson CR (2000) The biogeochemical cycling of phosphorus in marine systems. Earth Sci Rev 51:109–135

    CAS  CrossRef  Google Scholar 

  • Bishop MJ, Lohrmann R, Orgel LE (1972) Prebiotic phosphorylation of thymidine at 65 C in simulated desert conditions. Nature 237:162–164

    PubMed  CAS  CrossRef  Google Scholar 

  • Bowler MW, Cliff MJ, Waltho JP, Blackburn GM (2010) Why did nature select phosphate for its dominant roles in biology? New J Chem 34:784–794

    CAS  CrossRef  Google Scholar 

  • Breslow R (1959) On the mechanism of the formose reaction. Tetra Lett 21:22–26

    CrossRef  Google Scholar 

  • Bryant DE, Kee TP (2006) Direct evidence for the availability of reactive, water soluble phosphorus on the early earth. H-phosphinic acid from the Nantan meteorite. Chem Commun 22:2344–2346

    CrossRef  CAS  Google Scholar 

  • Bryant DE, Greenfield D, Walshaw RD, Evans SM, Nimmo AE, Smith C, Wang L, Pasek MA, Kee TP (2009) Electrochemical studies of iron meteorites. Phosphorus redox chemistry on the early Earth. Int J Astrobiol 8:27–36

    CAS  CrossRef  Google Scholar 

  • Bryant DE, Marriott KER, Macgregor SA, Fishwick CWG, Pasek MA, Kee TP (2010) On the prebiotic potential of reduced oxidation state phosphorus: the H-phosphinate–pyruvate system. Chem Commun 46:3726–3728

    CAS  CrossRef  Google Scholar 

  • Cheng C, Fan C, Wan R, Tong C, Miao Z, Chen J, Zhao Y (2002) Phosphorylation of adenosine with trimetaphosphate under simulated prebiotic conditions. Orig Life Evol Biosph 32:219–224

    PubMed  CAS  CrossRef  Google Scholar 

  • Cooper GW, Onwo WM, Cronin JR (1992) Alkyl phosphonic-acids and sulfonic-acids in the Murchison meteorite. Geochim Cosmochim Acta 56:4109–4115

    PubMed  CAS  CrossRef  Google Scholar 

  • Costanzo G, Saladino R, Crestini C, Ciciriello F, Di Mauro E (2007) Nucleoside phosphorylation by phosphate minerals. J Biol Chem 282:16729–16735

    PubMed  CAS  CrossRef  Google Scholar 

  • de Duve C (1987) Selection by differential molecular survival: a possible mechanism of early chemical evolution. Proc Natl Acad Sci USA 84:8253–8256

    PubMed  CrossRef  Google Scholar 

  • de Graaf RM, Visscher J, Schwartz AW (1995) A plausibly prebiotic synthesis of phosphonic acids. Nature 378:474–477

    PubMed  CrossRef  Google Scholar 

  • de Zwart II, Meade SJ, Pratt AJ (2004) Biomimetic phosphoryl transfer catalysed by iron(II)-mineral precipitates. Geochim Cosmochim Acta 68:4093–4098

    CrossRef  CAS  Google Scholar 

  • Dyhrman ST, Benitez-Nelson CR, Orchard ED, Haley ST, Pellechia PJ (2009) A microbial source of phosphonates in oligotrophic marine systems. Nat Geosci 2:696–699

    CAS  CrossRef  Google Scholar 

  • Dyson F (1999) Origins of Life (CANTO). Cambridge University Press, Cambridge

    CrossRef  Google Scholar 

  • Eschenmoser A (2007) The search for the chemistry of life’s origin. Tetrahedron 63:12821–12844

    CAS  CrossRef  Google Scholar 

  • Essene EJ, Fisher DC (1986) Lightning strike fusion – extreme reduction and metal-silicate liquid immiscibility. Science 234:189–193

    PubMed  CAS  CrossRef  Google Scholar 

  • Ferris JP, Ertem G (1993) Oligomerization reactions of ribonucleotides – the reaction of the 5′-phosphorimidazolide of adenosine with diadenosine pyrophosphate on montmorillonite and other minerals. Orig Life Evol Biosph 23:229–241

    CAS  CrossRef  Google Scholar 

  • Ferris JP, Yanagawa H, Dudgeon PA, Hagan WJ, Mallare TE (1984) The investigation of the HCN derivative diiminosuccinonitrile as a prebiotic condensing agent. The formation of phosphate esters. Orig Life Evol Biosph 15:29–43

    PubMed  CAS  CrossRef  Google Scholar 

  • Freedman LD, Doak GO (1957) The preparation and properties of phosphonic acids. Chem Rev 57:479–523

    CAS  CrossRef  Google Scholar 

  • Gabel NW (1968) Abiotic formation of phosphoric anhydride bonds in dilute aqueous conditions. Nature 218:354

    PubMed  CAS  CrossRef  Google Scholar 

  • Gao K, Orgel LE (2000) Polyphosphorylation and non-enzymatic template-directed ligation of oligonucleotides. Orig Life Evol Biosph 30:45–51

    PubMed  CAS  CrossRef  Google Scholar 

  • Glindemann D, de Graaf RM, Schwartz AW (1999) Chemical reduction of phosphate on the primitive Earth. Orig Life Evol Biosph 29:555–561

    PubMed  CAS  CrossRef  Google Scholar 

  • Goldhammer T, Bruchert V, Ferdelman TG, Zabel M (2010) Microbial sequestration of phosphorus in anoxic upwelling sediments. Nat Geosci 3:557–561

    CAS  CrossRef  Google Scholar 

  • Gorrell IB, Wang LM, Marks AJ, Bryant DE, Bouillot F, Goddard A, Heard DE, Kee TP (2006) On the origin of the Murchison meteorite phosphonates. Implications for pre-biotic chemistry. Chem Commun 15:1643–1645

    CrossRef  CAS  Google Scholar 

  • Gulick A (1955) Phosphorus as a factor in the origin of life. Am Sci 43:479–489

    CAS  Google Scholar 

  • Hagan WJ (2010) Uracil-catalyzed synthesis of acetyl phosphate: a photochemical driver for protometabolism. Chembiochem 11:383–387

    PubMed  CAS  CrossRef  Google Scholar 

  • Hagan WJ, Parker A, Steuerwald A, Hathaway M (2007) Phosphate solubility and the cyanate-mediated synthesis of pyrophosphate. Orig Life Evol Biosph 37:113–122

    PubMed  CAS  CrossRef  Google Scholar 

  • Halmann M, Schmidt H-L (1970) Cyanogen-induced synthesis of 18O-labelled Bribofuranose-1-phosphate and its acid catalysed hydrolysis. J Chem Soc C 9:1191–1193

    Google Scholar 

  • Halmann M, Sanchez RA, Orgel LE (1969) Phosphorylation of D-ribose in aqueous solution. J Org Chem 34:3702–3703

    CAS  CrossRef  Google Scholar 

  • Handschuh GJ, Orgel LE (1973) Struvite and prebiotic phosphorylation. Science 179:483–484

    PubMed  CAS  CrossRef  Google Scholar 

  • Hermes-Lima M (1990) Model for prebiotic pyrophosphate formation: condensation of precipitated orthophosphate at low temperature in the absence of condensing or phosphorylating agents. J Mol Evol 31:353–358

    CAS  CrossRef  Google Scholar 

  • Hermes-Lima M, Vieyra A (1989) Pyrophosphate formation from phospho(enol)pyruvate adsorbed onto precipitated orthosphosphate: a model for prebiotic catalysis of transphosphorylations. Orig Life Evol Biosph 19:143–152

    CAS  CrossRef  Google Scholar 

  • Hsiao C, Williams L (2009) A recurrent magnesium-binding motif provides a framework for the ribosomal peptidyl transferase center. Nucleic Acids Res 37:3134–3142

    PubMed  CAS  CrossRef  Google Scholar 

  • Hulshof J, Ponnamperuma C (1976) Prebiotic condensation-reactions in an aqueous-medium – review of condensing agents. Orig Life Evol Biosph 7:197–224

    CAS  CrossRef  Google Scholar 

  • Ibanez JD, Kimbal AP, Oro J (1971) Possible prebiotic condensation of mononucleotides by cyanate. Science 173:444–445

    PubMed  CAS  CrossRef  Google Scholar 

  • Joo H, Lin ZL, Arnold FH (1999) Laboratory evolution of peroxide-mediated cytochrome P450 hydroxylation. Nature 399:670–673

    PubMed  CAS  CrossRef  Google Scholar 

  • Kakegawa T, Noda M, Nannri H (2002) Geochemical cycles of bio-essential elements on the early Earth and their relationships to the origin of life. Res Geo 52:83–89

    CAS  CrossRef  Google Scholar 

  • Kanavarioti A (1997) Dimerization in highly concentrated solutions of phosphoimidazolide activated mononucleotides. Orig Life Evol Biosph 27:357–376

    PubMed  CAS  CrossRef  Google Scholar 

  • Keefe AD, Miller SL (1995) Are polyphosphates or phosphate esters pre-biotic reagents? J Mol Evol 41:693–702

    PubMed  CAS  CrossRef  Google Scholar 

  • Keefe AD, Miller SL (1996) Potentially prebiotic syntheses of condensed phosphates. Orig Life Evol Biosph 26:15–25

    PubMed  CAS  CrossRef  Google Scholar 

  • Kolb V, Zhang SB, Xu Y, Arrhenius G (1997) Mineral-induced phosphorylation of glycolate ion – a metaphor in chemical evolution. Orig Life Evol Biosph 27:485–503

    PubMed  CAS  CrossRef  Google Scholar 

  • Krishnamurthy R, Arrhenius G, Eschenmoser A (1999) Formation of glycolaldehyde phosphate from glycolaldehyde in aqueous solution. Orig Life Evol Biosph 29:333–354

    PubMed  CAS  CrossRef  Google Scholar 

  • Lange HC, Heijnen JJ (2001) Statistical reconciliation of the elemental and molecular biomass composition of Saccharomyces cerevisiae. Biotechnol Bioeng 75:334–344

    PubMed  CAS  CrossRef  Google Scholar 

  • Leman LJ, Orgel LE, Ghadiri MR (2006) Amino acid dependent formation of phosphate anhydrides in water mediated by carbonyl sulfide. J Am Chem Soc 128:20–21

    PubMed  CAS  CrossRef  Google Scholar 

  • Lin C, Fu H, Zhao Y, Cheng C (2005) Synthesis of nucleoside N-phosphoamino acids and peptide formation. Orig Life Evol Biosph 35:11–17

    PubMed  CAS  CrossRef  Google Scholar 

  • Lincoln TA, Joyce GF (2009) Self-sustained replication of an RNA enzyme. Science 323:1229–1232

    PubMed  CAS  CrossRef  Google Scholar 

  • Lohrmann R (1977) Formation of nucleoside-5`-phosphoramidates under potentially prebiological conditions. J Mol Evol 10:137–154

    PubMed  CAS  CrossRef  Google Scholar 

  • Lohrmann R, Orgel LE (1968) Prebiotic synthesis: phosphorylation in aqueous solution. Science 171:64–66

    CrossRef  Google Scholar 

  • Maheen G, Tian G, Wang Y, He C, Shi Z, Yuan H, Feng S (2010) Resolving the enigma of prebiotic C-O-P bond formation: prebiotic hydrothermal synthesis of important biological phosphate esters. Heteroatom Chem 21:161–167

    CAS  Google Scholar 

  • Makino K, Shinagawa H, Amemura M, Kawamoto T, Yamada M, Nakata A (1989) Signal transduction in the phosphate regulon of Escherichia coli involves phosphotransfer between PHOR and PHOB proteins. J Mol Biol 210:551–559

    PubMed  CAS  CrossRef  Google Scholar 

  • Miller SL (1953) A production of amino acids under possible primitive Earth conditions. Science 117:528–529

    PubMed  CAS  CrossRef  Google Scholar 

  • Miller SL, Parris M (1964) Synthesis of pyrophosphate under primitive earth conditions. Nature 204:1248–1250

    CAS  CrossRef  Google Scholar 

  • Miller SL, Urey HC (1959) Organic compound synthesis on the primitive earth. Science 130:245–251

    PubMed  CAS  CrossRef  Google Scholar 

  • Milner-White EJ, Russell MJ (2005) Sites for phosphates and iron-sulfur thiolates in the first membranes: 3 to 6 residue anion-binding motifs (nests). Orig Life Evol Biosph 35:19–27

    PubMed  CAS  CrossRef  Google Scholar 

  • Mittenhuber G (2001) Phylogenetic analyses and comparative genomics of vitamin B6 (pyridoxine) and pyridoxal phosphate biosynthesis pathways. J Mol Microbiol Biotechnol 3:1–20

    PubMed  CAS  Google Scholar 

  • Montalbetti CAGN, Falque V (2005) Amide bond formation and peptide coupling. Tetrahedron 61:10827–10852

    CAS  CrossRef  Google Scholar 

  • Mulkidjanian AY (2009) Origin of life in the Zinc World. 1. Photosynthetic, porous edifices built of hydrothermally precipitated zinc sulfide (ZnS) as cradles of life on Earth. Biol Direct 4:26

    PubMed  CrossRef  CAS  Google Scholar 

  • Mullen LB, Sutherland JD (2007) Formation of potentially prebiotic amphiphiles by reaction of β-hydroxy-n-alkylamines with cyclotriphosphate. Angew Chem Int Ed Engl 46:4166–4168

    PubMed  CAS  CrossRef  Google Scholar 

  • Murai T, Tomizawa C (1976) Chemical transformation of S-benzyl O-ethyl phenylphosphonothiolate (Inezin) by ultraviolet-light. J Environ Sci Health B 11:185–197

    PubMed  CAS  CrossRef  Google Scholar 

  • Nelson DL, Cox MM (2005) Lehninger’s principles of biochemistry, 4th edn. W.H. Freeman and Company, New York, 1100pp

    Google Scholar 

  • Nielsen PE (2007) Peptide nucleic acids and the origin of life. Chem Biodivers 4:1996–2002

    PubMed  CAS  CrossRef  Google Scholar 

  • Orgel LE (2004) Prebiotic chemistry and the origin of the RNA world. Crit Rev Biochem Mol Biol 39:99–123

    PubMed  CAS  CrossRef  Google Scholar 

  • Oro J (1960) Synthesis of adenine from ammonium cyanide. Biochem Biophys Res Comm 407–412

    Google Scholar 

  • Osterberg R, Orgel LE (1972) Polyphosphate and trimetaphosphate formation under potentially prebiotic conditions. J Mol Evol 1:241–248

    PubMed  CAS  CrossRef  Google Scholar 

  • Ozawa K, Nemoto A, Imai E-I, Honda H, Hatori K, Matsuno K (2004) Phosphorylation of nucleotide molecules in hydrothermal environments. Orig Life Evol Biosph 34:465–471

    PubMed  CAS  CrossRef  Google Scholar 

  • Pasek MA (2008) Rethinking early Earth phosphorus geochemistry. Proc Natl Acad Sci USA 105:853–858

    PubMed  CAS  CrossRef  Google Scholar 

  • Pasek MA, Block K (2009) Lightning reduction of phosphate: implications for phosphorus biogeochemistry. Nat Geosci 2:553–556

    CAS  CrossRef  Google Scholar 

  • Pasek MA, Lauretta DS (2005) Aqueous corrosion of phosphide minerals from iron meteorites: a highly reactive source of prebiotic phosphorus on the surface of the early Earth. Astrobiology 5:515–535

    PubMed  CAS  CrossRef  Google Scholar 

  • Pasek MA, Lauretta DS (2008) Extraterrestrial flux of potentially prebiotic C, N, and P to the early Earth. Orig Life Evol Biosph 38:5–21

    PubMed  CAS  CrossRef  Google Scholar 

  • Pasek MA, Dworkin JP, Lauretta DS (2007) A radical pathway for organic phosphorylation during schreibersite corrosion with implications for the origin of life. Geochim Cosmochim Acta 71:1721–1736

    CAS  CrossRef  Google Scholar 

  • Pasek MA, Kee TP, Bryant DE, Pavlov AA, Lunine JI (2008) Production of potentially prebiotic condensed phosphates by phosphorus redox chemistry. Angew Chem Int Ed Engl 47:7918–7920

    PubMed  CAS  CrossRef  Google Scholar 

  • Pech H, Henry A, Khachikian CS, Salmassi TM, Hanrahan G, Foster KL (2009) Detection of geothermal phosphite using high-performance liquid chromatography. Environ Sci Technol 43:7671–7675

    PubMed  CAS  CrossRef  Google Scholar 

  • Petrov AS, Bowman JC, Harvey SC, Williams LD (2011) Bidentate RNA–magnesium clamps: On the origin of the special role of magnesium in RNA folding. RNA 17:291–297, 10.1261/rna.2390311

    Google Scholar 

  • Pitsch S, Pombovillar E, Eschenmoser A (1994) Chemistry of α-aminonitriles.13. Formation of 2-oxoethyl phosphates (glycolaldehyde phosphates) from racoxiranecarbonitrile and on (formal) constitutional relationships between 2-oxoethyl phosphates and oligo(hexopyranosyl and pentopyranosyl) nucleotide backbones. Helvetica Chimica Acta 77:2251–2285

    CAS  CrossRef  Google Scholar 

  • Pohorille A, Deamer D (2009) Self-assembly and function of primitive cell membranes. Res Microbiol 160:449–456

    PubMed  CAS  CrossRef  Google Scholar 

  • Ponnamperuma C, Chang S (1971) In: Buvet R, Ponnamperuma C (eds) The role of phosphates in chemical evolution. Chemical evolution and the origin of life. North-Holland, Amsterdam, Netherlands 216–223

    Google Scholar 

  • Ponnamperuma C, Mack R (1965) Nucleotide synthesis under possible primitive Earth conditions. Science 148:1221–1223

    PubMed  CAS  CrossRef  Google Scholar 

  • Ponnamperuma C, Mariner R, Sagan C (1963) Synthesis of adenosine triphosphate under possible primitive earth conditions. Nature 199:222–226

    PubMed  CAS  CrossRef  Google Scholar 

  • Powner M, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459:239–242

    PubMed  CAS  CrossRef  Google Scholar 

  • Prabahar KJ, Ferris JP (1997) Effect of dinucleoside pyrophosphates on the oligomerization of activated mononucleotides on Na+−montmorillonite: reaction of the 5′-phosphoro-4-(dimethylamino)pyridinium[4-(CH3)2NPYPA] with A5′ppA. Orig Life Evol Biosph 27:513–523

    PubMed  CAS  CrossRef  Google Scholar 

  • Rabinowitz J, Chang S, Ponnamperuma C (1968) Phosphorylation on the primitive Earth. Nature 218:442–443

    PubMed  CAS  CrossRef  Google Scholar 

  • Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46:205–221

    CAS  Google Scholar 

  • Reimann R, Zubay G (1999) Nucleoside phosphorylation: a feasible step in the prebiotic pathway to RNA. Orig Life Evol Biosph 29:229–247

    PubMed  CAS  CrossRef  Google Scholar 

  • Reusch RN, Sadoff HL (1988) Putative structure and functions of a poly-beta-hydroxybutyrate calcium polyphosphate channel in bacterial plasma-membranes. Proc Natl Acad Sci USA 85:4176–4180

    PubMed  CAS  CrossRef  Google Scholar 

  • Rytting E, Lentz KA, Chen X-Q, Qian F, Venkatesh S (2005) Aqueous and cosolvent solubility data for drug-like organic compounds. AAPS J 7:E78–E105

    PubMed  CAS  CrossRef  Google Scholar 

  • Saffhill R (1970) Selective phosphorylation of the cis-2′,3′-diol of unprotected ribonucleosides with trimetaphosphate in aqueous solution. J Org Chem 35:2881–2883

    PubMed  CAS  CrossRef  Google Scholar 

  • Sales BC, Chakoumakos BC, Boatner LA, Ramey JO (1992) Structural evolution of the amorphous solids produced by heating crystalline MgHPO .4 3H2O. J Mater Res 7:2646–2649

    CAS  CrossRef  Google Scholar 

  • Sauer HW, Goodman EM, Babcock KL, Rusch HP (1969) Polyphosphate in life cycle of Phsarum-Plycephalum and its relation to RNA synthesis. Biochim Biophys Acta 195:401–409

    PubMed  CAS  Google Scholar 

  • Saygin O (1981) Nonenzymatic photophosphorylation with visible light. A possible mode of prebiotic ATP formation. Naturwissenschaften 68:617–619

    CAS  CrossRef  Google Scholar 

  • Saygin O (1983) Nonenzymatic photophosphorylation of acetate by carbamyl phosphate. A model reaction for prebiotic activation of carboxyl groups. Orig Life Evol Biosph 13:43–48

    CAS  CrossRef  Google Scholar 

  • Schnell R, Oehlmann W, Singh M, Schneider G (2007) Structural insights into catalysis and inhibition of O-acetylserine sulfhydrylase from Mycobacterium tuberculosis: crystal structures of the enzyme-a-aminoacrylate intermediate and an enzyme–inhibitor complex. J Biol Chem 282:23473–23481

    PubMed  CAS  CrossRef  Google Scholar 

  • Schwartz AW (1972) The role of phosphates in chemical evolution In: Rohlfing DL, Oparin AI (eds) Sources of phosphorus on the primitive earth. Molecular evolution prebiological and biological. Plenum Press, New York, pp 216–223

    Google Scholar 

  • Schwartz AW, Ponnamperuma C (1968) Phosphorylation on the primitive earth. Phosphorylation of adenosine with linear polyphosphate salts in aqueous solution. Nature 218:443

    PubMed  CAS  CrossRef  Google Scholar 

  • Schwartz AW, Van der Veen M, Bisseling T, Chittenden GJF (1975) Prebiotic nucleotide synthesis – demonstration of a geologically plausible pathway. Orig Life Evol Biosph 6:163–168

    CAS  CrossRef  Google Scholar 

  • Serrano A, Perez-Castineira JR, Baltscheffsky M, Baltscheffsky H (2007) H+-PPases: yesterday, today and tomorrow. IUBMB Life 59:76–83

    PubMed  CAS  CrossRef  Google Scholar 

  • Sharov AA (2009) Coenzyme autocatalytic network on the surface of oil microspheres as a model for the origin of life. Int J Mol Sci 10:1838–1852

    PubMed  CAS  CrossRef  Google Scholar 

  • Sherwood E, Oro J (1977) Cyanamide mediated syntheses under plausible primitive earth conditions II. The polymerization of deoxythymidine 5′-triphosphate. J Mol Evol 10:183–192

    PubMed  CAS  CrossRef  Google Scholar 

  • Smayda TJ (1997) Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol Oceanogr 42:1137–1153

    CrossRef  Google Scholar 

  • Srinivasan V, Morowitz HJ (2009) Analysis of the intermediary metabolism of a reductive chemoautotroph. Biol Bull 217:222–232

    PubMed  CAS  Google Scholar 

  • Steinman G, Lemmon RM, Calvin M (1964) Cyanamide: a possible key compound in chemical evolution. Proc Natl Acad Sci USA 52:27–30

    PubMed  CAS  CrossRef  Google Scholar 

  • Steinman G, Kenyon DH, Calvin M (1965) Dehydration condensation in aqueous solution. Nature 206:707–708

    CAS  CrossRef  Google Scholar 

  • Terelli E, Wheeler SF (1993) Formation of esters, especially phosphate esters, under “dry” conditions and “mild” pH. Chem Industry 1993:164–165

    Google Scholar 

  • Todd A (1959) Some aspects of phosphate chemistry. Proc Natl Acad Sci USA 45:1389–1397

    PubMed  CAS  CrossRef  Google Scholar 

  • Turian G, Rivara-Minten E (2001) Prebiotic phosphoramidation of nucleobases by Mg2+-triggered decyclization of trimetaphosphate. Arch des Sciences 54:233–238

    CAS  Google Scholar 

  • Van Wazer JR (1958) Phosphorus and its compounds, vol 1. Interscience, New York, 954pp

    Google Scholar 

  • Waehneldt TV, Fox S (1967) Phosphorylation of nucleosides with polyphosphoric acid. Biochim Biophys Acta 134:9–16

    Google Scholar 

  • Wagner E, Xiang YB, Baumann K, Guck J, Eschenmoser A (1990) Chemistry of α-aminonitriles-aziridine-2-carbonitrile, a source of racemic O3-phosphoserinenitrile and glycolaldehyde phosphate. Helvetica Chimica Acta 73:1391–1409

    CAS  CrossRef  Google Scholar 

  • Walling C (1975) Fenton’s reagent revisited. Acc Chem Res 8:125–131

    CAS  CrossRef  Google Scholar 

  • Weber AL (1981) Formation of pyrophosphate, tripolyphosphate, and phosphorylimidazole with the thioester, N, S-diacetylcysteamine, as the condensing agent. J Mol Evol 18:24–29

    PubMed  CAS  CrossRef  Google Scholar 

  • Weber AL (1982) Formation of pyrophosphate on hydroxyapatite with thioesters as condensing agents. Biosystems 15:183–189

    PubMed  CAS  CrossRef  Google Scholar 

  • Westheimer FH (1987) Why nature chose phosphate. Science 235:1173–1178

    PubMed  CAS  CrossRef  Google Scholar 

  • White HB (1976) Coenzymes as fossils of an earlier metabolic state. J Mol Evol 7:101–104

    PubMed  CAS  CrossRef  Google Scholar 

  • Wolfe-Simon F, Davies PCW, Anbar AD (2009) Did nature also choose arsenic? Int J Astrobiol 8:69–74

    CAS  CrossRef  Google Scholar 

  • Yamagata Y (1999) Prebiotic formation of ADP and ATP from AMP, calcium phosphates and cyanate in aqueous solution. Orig Life Evol Biosph 29:511–520

    PubMed  CAS  CrossRef  Google Scholar 

  • Yamagata Y, Inomata K (1997) Condensation of glycylglycine to oligoglycines with trimetaphosphate in aqueous solution II: catalytic effect of the magnesium ion. Orig Life Evol Biosph 27:339–344

    PubMed  CAS  CrossRef  Google Scholar 

  • Yamagata Y, Mohri T (1982) Formation of cyanate and carbamyl phosphate by electric discharges of model primitive gas. Orig Life Evol Biosph 12:41–44

    CAS  CrossRef  Google Scholar 

  • Yamagata Y, Matsukawa T, Mohri T, Inomata K (1979) Phosphorylation of adenosine in aqueous-solution by electric-discharges. Nature 282:284–286

    PubMed  CAS  CrossRef  Google Scholar 

  • Yamagata Y, Mohri T, Yamakoshi M, Inomata K (1981) Constant AMP synthesis in aqueous solution by electric discharges. Orig Life Evol Biosph 11:233–235

    CAS  CrossRef  Google Scholar 

  • Yamagata Y, Watanabe H, Saitoh M, Namba T (1991) Volcanic production of polyphosphates and its relevance to prebiotic evolution. Nature 352:516–519

    PubMed  CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew A. Pasek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pasek, M.A., Kee, T.P. (2011). On the Origin of Phosphorylated Biomolecules. In: Egel, R., Lankenau, DH., Mulkidjanian, A. (eds) Origins of Life: The Primal Self-Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21625-1_3

Download citation