Skip to main content

Fusion of Elevation Data into Satellite Image Classification Using Refined Production Rules

  • Conference paper
Image Analysis and Recognition (ICIAR 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6753))

Included in the following conference series:

Abstract

The image classification process is based on the assumption that pixels which have similar spatial distribution patterns, or statistical characteristics, belong to the same spectral class. In a previous study we have shown how we can improve the accuracy of classification of remotely sensed imagery data by incorporating contextual elevation knowledge in a form of a digital elevation model with the output of the classification process using Dempster-Shafer Theory of Evidence. A knowledge based approach is created for this purpose using suitable production rules derived from the elevation distributions and range of values for the elevation data attached to a particular satellite image. Production rules are the major part of knowledge representation and have the basic form: IF condition THEN Inference. Although the basic form of production rules has shown accuracy improvement, in general, in some cases accuracy can degrade. In this paper we propose a “refined” approach that takes into account the actual “distribution” of elevation values for each class rather than simply the “range” of values to solve the accuracy degradation. This approach is performed by refining the basic production rules used in the previous study taking into account the number of pixels at each elevation within the elevation distribution for each class.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Momani, B.M., Morrow, P.J., McClean, S.I.: Using Dempster-Shafer to incorporate knowledge into satellite image classification. Artif. Intell. Rev. 25, 161–178 (2006)

    Article  Google Scholar 

  2. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. Royal Statistical Soc. B 39, 1–39 (1977)

    MathSciNet  MATH  Google Scholar 

  3. Vatsavai, R.R., Shekhar, S., Burk, T.E.: A Semi-Supervised Learning Method for Remote Sensing Data Mining. In: Proc. ICTAI, pp. 207–211 (2005)

    Google Scholar 

  4. Benkhalifa, M., Bensaid, A., Mouradi, A.: Text categorization using the semi-supervised fuzzy c-means algorithm. NAFIPS, 561–565 (June 1999)

    Google Scholar 

  5. Huimin, G., Xutao, D., Bastola, D., Ali, H.: On clustering biological data using unsupervised and semi-supervised message passing. BIBE, 294–298 (2005)

    Google Scholar 

  6. Dempster, A.P.: A Generalisation of Bayesian Inference. J. of the Royal Statistical Society B 30, 205–247 (1968)

    MATH  Google Scholar 

  7. Guan, J.W., Bell, D.A.: Evidence Theory and its Applications. Elsevier Science Inc., New York (1991)

    MATH  Google Scholar 

  8. McClean, S.I., Scotney, B.W.: Using Evidence Theory for the Integration of Distributed Databases. Int. Journal of Intelligent Systems 12, 763–776 (1997)

    Article  Google Scholar 

  9. Le Héegarat-Mascle, S., Richard, D., Ottl´e, C.: Multi-scale data fusion using Dempster-Shafer evidence theory. In: ICAE, vol. 10, pp. 9–22 (2003)

    Google Scholar 

  10. Yager, R.R., Engemann, K.J., Filev, D.P.: On the Concept of Immediate Probabilities. Int. Journal of Intelligent Systems 10, 373–397 (1995)

    Article  MATH  Google Scholar 

  11. Muaralikrishna, I.V.: Image Classification and Performance Evaluation of IRS IC LISS – III Data. In: IEEE Conference on Geoscience and Remote Sensing, vol. 4(S), pp. 1772–1774 (1997)

    Google Scholar 

  12. The US Geological Survey, http://www.seamless.usgs.gov (cited January 10, 2011)

  13. Congalton, R.G.: Accuracy assessment and validation of remotely sensed and other spatial information. Int. Journal of Wildland Fire 10, 321–328 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Momani, B.A., Morrow, P., McClean, S. (2011). Fusion of Elevation Data into Satellite Image Classification Using Refined Production Rules. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2011. Lecture Notes in Computer Science, vol 6753. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21593-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21593-3_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21592-6

  • Online ISBN: 978-3-642-21593-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics