Skip to main content

On Freezing and Reactivating Learnt Clauses

  • Conference paper
Theory and Applications of Satisfiability Testing - SAT 2011 (SAT 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6695))

Abstract

In this paper, we propose a new dynamic management policy of the learnt clause database in modern sat solvers. It is based on a dynamic freezing and activation principle of the learnt clauses. At a given search state, using a relevant selection function, it activates the most promising learnt clauses while freezing irrelevant ones. In this way, clauses learned at previous steps can be frozen at the current step and might be activated again in future steps of the search process. Our strategy tries to exploit pieces of information gathered from the past to deduce the relevance of a given clause for the remaining search steps. This policy contrasts with all the well-known deletion strategies, where a given learned clause is definitely eliminated. Experiments on sat instances taken from the last competitions demonstrate the efficiency of our proposed technique.

Nominated as Best Paper candidate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Audemard, G., Bordeaux, L., Hamadi, Y., Jabbour, S., Saïs, L.: A Generalized Framework for Conflitcs Analysis. Technical Report MSR-TR-2008-34, Microsoft Research (2008)

    Google Scholar 

  2. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In: Proceedings of IJCAI, pp. 399–404 (2009)

    Google Scholar 

  3. Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the potential of clause learning. Journal of Artificial Intelligence Research 22, 319–351 (2004)

    MATH  Google Scholar 

  4. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Gomes, C., Selman, B., Kautz, H.: Boosting combinatorial search through randomization. In: Proceedings of AAAI, pp. 431–437 (1998)

    Google Scholar 

  7. Huang, J.: The effect of restarts on the efficiency of clause learning. In: Proceedings of IJCAI, pp. 2318–2323 (2007)

    Google Scholar 

  8. Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 129–144. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Bayardo Jr., R.J., Schrag, R.: Using csp look-back techniques to solve real-world sat instances. In: Proceedings of AAAI, pp. 203–208 (1997)

    Google Scholar 

  10. Marques-Silva, J., Sakallah, K.: GRASP - A New Search Algorithm for Satisfiability. In: Proceedings of ICCAD, pp. 220–227 (1996)

    Google Scholar 

  11. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: Proceedings of DAC, pp. 530–535 (2001)

    Google Scholar 

  12. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for satisfiability solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 294–299. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers with restarts. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 654–668. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Pipatsrisawat, K., Darwiche, A.: Width-based restart policies for clause-learning satisfiability solvers. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 341–355. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Zhang, L., Madigan, C., Moskewicz, M., Malik, S.: Efficient conflict driven learning in boolean satisfiability solver. In: Proceedings of ICCAD, pp. 279–285 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Audemard, G., Lagniez, JM., Mazure, B., Saïs, L. (2011). On Freezing and Reactivating Learnt Clauses. In: Sakallah, K.A., Simon, L. (eds) Theory and Applications of Satisfiability Testing - SAT 2011. SAT 2011. Lecture Notes in Computer Science, vol 6695. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21581-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21581-0_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21580-3

  • Online ISBN: 978-3-642-21581-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics