Abstract
In this paper, we propose a new dynamic management policy of the learnt clause database in modern sat solvers. It is based on a dynamic freezing and activation principle of the learnt clauses. At a given search state, using a relevant selection function, it activates the most promising learnt clauses while freezing irrelevant ones. In this way, clauses learned at previous steps can be frozen at the current step and might be activated again in future steps of the search process. Our strategy tries to exploit pieces of information gathered from the past to deduce the relevance of a given clause for the remaining search steps. This policy contrasts with all the well-known deletion strategies, where a given learned clause is definitely eliminated. Experiments on sat instances taken from the last competitions demonstrate the efficiency of our proposed technique.
Nominated as Best Paper candidate.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Audemard, G., Bordeaux, L., Hamadi, Y., Jabbour, S., Saïs, L.: A Generalized Framework for Conflitcs Analysis. Technical Report MSR-TR-2008-34, Microsoft Research (2008)
Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In: Proceedings of IJCAI, pp. 399–404 (2009)
Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the potential of clause learning. Journal of Artificial Intelligence Research 22, 319–351 (2004)
Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005)
Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)
Gomes, C., Selman, B., Kautz, H.: Boosting combinatorial search through randomization. In: Proceedings of AAAI, pp. 431–437 (1998)
Huang, J.: The effect of restarts on the efficiency of clause learning. In: Proceedings of IJCAI, pp. 2318–2323 (2007)
Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 129–144. Springer, Heidelberg (2010)
Bayardo Jr., R.J., Schrag, R.: Using csp look-back techniques to solve real-world sat instances. In: Proceedings of AAAI, pp. 203–208 (1997)
Marques-Silva, J., Sakallah, K.: GRASP - A New Search Algorithm for Satisfiability. In: Proceedings of ICCAD, pp. 220–227 (1996)
Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: Proceedings of DAC, pp. 530–535 (2001)
Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for satisfiability solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 294–299. Springer, Heidelberg (2007)
Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers with restarts. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 654–668. Springer, Heidelberg (2009)
Pipatsrisawat, K., Darwiche, A.: Width-based restart policies for clause-learning satisfiability solvers. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 341–355. Springer, Heidelberg (2009)
Zhang, L., Madigan, C., Moskewicz, M., Malik, S.: Efficient conflict driven learning in boolean satisfiability solver. In: Proceedings of ICCAD, pp. 279–285 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Audemard, G., Lagniez, JM., Mazure, B., Saïs, L. (2011). On Freezing and Reactivating Learnt Clauses. In: Sakallah, K.A., Simon, L. (eds) Theory and Applications of Satisfiability Testing - SAT 2011. SAT 2011. Lecture Notes in Computer Science, vol 6695. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21581-0_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-21581-0_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21580-3
Online ISBN: 978-3-642-21581-0
eBook Packages: Computer ScienceComputer Science (R0)