Skip to main content

MicroGrids Operation and Control under Emergency Conditions

  • Chapter
Smart Power Grids 2011

Part of the book series: Power Systems ((POWSYS))

Abstract

MicroGrids comprise low voltage distribution systems with distributed energy sources, storage devices and controllable loads, operated connected to the main power network or autonomously, in a controlled coordinated way. In case of MicroGrids autonomous operation, management of instantaneous active power balance imposes unique challenges. Traditionally, power grids are supplied by sources having rotating masses and these are regarded as essential for the inherent stability of the system. In contrast, MicroGrids are dominated by inverter interfaced sources that are inertia-less, but do offer the possibility of a more flexible operation. When a forced or scheduled islanding takes place in a MicroGrid, it must have the ability to operate stably and autonomously, requiring the use of suitable control strategies. The MicroGrid power sources can also be exploited in order to locally promote a service restoration strategy following a general blackout. A sequence of actions for the black start procedure is also presented and it is expected to be an advantage in terms of reliability as a result from the presence of very large amounts of dispersed generation in distribution grids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lopes, J.A.P., Moreira, C.L., Madureira, A.G.: Defining control strategies for microgrids islanded operation. IEEE Trans. Power Syst. 21, 916–924 (2006)

    Article  Google Scholar 

  2. Moreira, C.L., Resende, F.O., Lopes, J.A.P.: Using low voltage microgrids for service restoration. IEEE Trans. Power Syst. 22, 395–403 (2007)

    Article  Google Scholar 

  3. Katiraei, F., Iravani, M.R., Lehn, P.W.: Microgrid autonomous operation during and subsequent to islanding process. IEEE Trans. Power Deliv. 20, 248–257 (2005)

    Article  Google Scholar 

  4. Katiraei, F., Iravani, M.R.: Power management strategies for a microgrid with multiple distributed generation units. IEEE Trans. Power Syst. 21, 1821–1831 (2006)

    Article  Google Scholar 

  5. Hatziargyriou, N., Asano, H., Iravani, R., Marnay, C.: Microgrids. IEEE Power Energy Mag. 5, 78–94 (2007)

    Article  Google Scholar 

  6. Moreira, C.L.: Identification and development of microgrids emergency control procedures. PhD Dissertation, University of Porto (2008)

    Google Scholar 

  7. O´Hayre, R.P.: Fuel cell fundamentals. John Wiley & Sons, New York (2009)

    Google Scholar 

  8. Ellis, M.W., Spakovsky, M.R.V., Nelson, D.J.: Fuel cell systems: efficient, flexible energy conversion for the 21st century. Proc. IEEE 89, 1808–1818 (2001)

    Article  Google Scholar 

  9. Laughton, M.A.: Fuel cells. Power Eng. J. (16), 37–47 (2002)

    Google Scholar 

  10. Rajashekara, K.: Hybrid fuel cell strategies for clean power generation. IEEE Trans. Ind. Appl. 41, 682–689 (2005)

    Article  Google Scholar 

  11. Zhu, Y., Tomsovic, K.: Development of models for analyzing the load-following performance of microturbines and fuel cells. Electr. Power Syst. Res. 62, 1–11 (2002)

    Article  Google Scholar 

  12. Knyazkin, V., Soder, L., Canizares, C.: Control challenges of fuel cell-driven distributed generation. In: Proc. IEEE Bologna Power Tech. (2003)

    Google Scholar 

  13. Li, Y.H., Choi, S.S., Rajakaruna, S.: An analysis of the control and operation of a solid oxide fuel-cell power plant in an isolated system. IEEE Trans. Energy Convers. 20, 381–387 (2005)

    Article  Google Scholar 

  14. Wang, C., Nehrir, M.H.: A physically based dynamic model for solid oxide fuel cells. IEEE Trans. Energy Convers. 22, 887–897 (2007)

    Article  Google Scholar 

  15. Jurado, F., Valverde, M., Cano, A.: Effect of a SOFC plant on distribution system stability. J. Power Sources 129, 170–179 (2004)

    Article  Google Scholar 

  16. Guda, S.R., Wang, C., Nehrir, M.H.: Modelling of microturbine power generation systems. Electr. Power Compon. Syst. 34, 1027–1041 (2006)

    Article  Google Scholar 

  17. Al-Hinai, A., Feliachi, A.: Dynamic model of a microturbine used as a distributed generator. In: Proc. 34th Southeast Symp. Syst. Theory (2002)

    Google Scholar 

  18. Bertani, A., Bossi, C., Fornari, F., Massucco, S., Spelta, S., Tivegna, F.: A microturbine generation system for grid connected and islanding operation. In: Proc. IEEE 2004 Power System Conf. Expo. (2004)

    Google Scholar 

  19. Fethi, O., Dessaint, L.A., Al-Haddad, K.: Modelling and simulation of the electric part of a grid connected microturbine. In: Proc. 2004 IEEE Power Eng. Soc. Gen. Meet. (2004)

    Google Scholar 

  20. Wang, W., Cai, R., Zhang, N.: General characteristics of single shaft microturbine set at variable speed operation and its optimization. Appl. Therm. Eng. 34, 1851–1863 (2003)

    Google Scholar 

  21. Bose, B.K.: Modern power electronics and AC drives. Prentice Hall, Upper Saddle River (2002)

    Google Scholar 

  22. Barakati, J.D., Kazerani, S.M., Aplevich, M.: Maximum power tracking control for a wind turbine system including a matrix converter. IEEE Trans. Energy Convers. 24, 705–713 (2009)

    Article  Google Scholar 

  23. Duffie, J.A., Beckman, W.A.: Solar engineering of thermal processes. John Wiley & Sons, New York (2006)

    Google Scholar 

  24. Esram, T., Chapman, P.L.: Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans. Energy Convers. 22, 439–449 (2007)

    Article  Google Scholar 

  25. Hatziargyriou, N., Kariniotakis, G., Jenkins, N., Lopes, J.A.P., Oyarzabal, J., Kanellos, F., Pivert, X.L., Jayawarna, N., Gil, N., Moreira, C.L., Larrabe, Z.: Modelling of micro-sources for security studies. In: Proc. Paris CIGRÉ Session (2004)

    Google Scholar 

  26. Green, T.C., Prodanovic, M.: Control of inverter-based micro-grids. Electr. Power Syst. Res. 77, 1204–1213 (2007)

    Article  Google Scholar 

  27. Barsali, S., Ceraolo, M., Pelacchi, P., Poli, D.: Control techniques of dispersed generators to improve the continuity of electricity supply. In: Proc. IEEE Power Eng. Soc. Winter Meet. (2002)

    Google Scholar 

  28. Chandorkar, M.C., Divan, D.M., Adapa, R.: Control of parallel connected inverters in standalone ac supply systems. IEEE Trans. Ind. Appl. 29, 136–143 (1993)

    Article  Google Scholar 

  29. Lasseter, R., Piagi, P.: Providing premium power through distributed resources. In: Proc. 33rd Hawaii Int. Conf. Syst. Sci. (2000)

    Google Scholar 

  30. Piagi, P., Lasseter, R.: Autonomous control of microgrids. In: Proc. 2006 IEEE Power Eng. Soc. Gen. Meet. (2006)

    Google Scholar 

  31. Blaabjerg, F., Teodorescu, R., Liserre, M., Timbus, A.V.: Overview of control and grid synchronization for distributed power generation systems. IEEE Trans. Ind. Appl. Electron. 53, 1398–1409 (2006)

    Article  Google Scholar 

  32. Engler, A.: Control of battery inverters in modular and expandable island grids. PhD Dissertation, University of Kassel (2001) (in German)

    Google Scholar 

  33. Engler, A.: Applicability of droops in low voltage grids. Int. J. Distrib. Energy Resour. 1, 3–15 (2005)

    Google Scholar 

  34. Jayawarna, N., Jenkins, N., Barnes, M., Lorentzu, M., Papathanassiou, S., Hatziargyriou, N.: Safety analysis of a MicroGrid. In: Proc. Int. Conf. Future Power System, The Netherlands (2005)

    Google Scholar 

  35. Adibi, M.M., Fink, L.H.: Special considerations in power system restoration. IEEE Trans. Power Syst. 7, 1419–1427 (1992)

    Article  Google Scholar 

  36. Ancona, J.J.: A framework for power system restoration following a major power failure. IEEE Trans. Power Syst. 10, 1480–1485 (1995)

    Article  Google Scholar 

  37. Adibi, M.M., Fink, L.H.: Power system restoration planning. IEEE Trans. Power Syst. 9, 22–28 (1994)

    Article  Google Scholar 

  38. Pham, T.T.H., Béssanger, Y., Hadjsaid, N.: New challenges in power system restoration with large scale of dispersed generation insertion. IEEE Trans. Power Syst. 24, 398–406 (2009)

    Article  Google Scholar 

  39. Adibi, M.M., Kafka, R.J.: Power system restoration issues. IEEE Comput. Appl. Power 4, 19–24 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. L. Moreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moreira, C.L., Lopes, J.A.P. (2012). MicroGrids Operation and Control under Emergency Conditions. In: Keyhani, A., Marwali, M. (eds) Smart Power Grids 2011. Power Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21578-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21578-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21577-3

  • Online ISBN: 978-3-642-21578-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics