Skip to main content

Cytology Imaging Segmentation Using the Locally Constrained Watershed Transform

  • Conference paper
Book cover Mathematical Morphology and Its Applications to Image and Signal Processing (ISMM 2011)

Abstract

The segmentation of medical images poses a great challenge in the area of image processing and analysis due mainly to noise, complex background, fuzzy and overlapping objects, and non-homogeneous gradients. This work uses the so-called locally constrained watershed transform introduced by Beare [1] to address these problems. The shape constraints introduced by this type of flexible watershed transformation permit to successfully segment and separate regions of interest. This type of watershed offers an alternative to other methods (such as distance function flooding) for particle extraction in medical imaging segmentation applications, where particle overlapping is quite common. Cytology images have been used for the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beare, R.: A locally constrained watershed transform. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(7), 1063–1074 (2006), doi:10.1109/TPAMI.2006.132

    Article  Google Scholar 

  2. Duncan, J.S., Ayache, N.: Medical image analysis: Progress over two decades and the challenges ahead. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(1), 85–106 (2000), doi:10.1109/34.824822

    Article  Google Scholar 

  3. Zhang, D., Xiong, H., Zhou, X., Yang, L., Wang, Y.L., Wong, S.: A confident scale–space shape representation framework for cell migration detection. Journal of Microscopy 231(3), 395–407 (2008)

    Article  MathSciNet  Google Scholar 

  4. Cseke, I.: A fast segmentation scheme for white blood cell images. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) Proceedings of the 11th IAPR International Conference on Pattern Recognition. Conference C: Image, Speech and Signal Analysis, vol. 3, pp. 530–533. IBBB, Berlin (1992), doi:10.1109/ICPR.1992.202041

    Google Scholar 

  5. Rojo, M.G., García, G.B., García, J.G., Vicente, M.C.: Preparaciones digitales en los servicios de anatomía patológica (i): Aspectos básicos de imagen digital. Revista Española De Patología 38(2), 69–77 (2005), http://www.pgmacline.es/revpatologia/volumen38/vol38-num2/38-2n02.htm

    Google Scholar 

  6. Rojo, M., Sánchez, F.: El impacto de la historia clínica electrónica en la investigación y la docencia. In (Coordinador), C.J. (ed.): De La Historia Clínica A La Historia De Salud Electrónica. Informes SEIS, vol. 5. SEIS, Pamplona: Sociedad Española de Informática de la Salud, pp. 315–345 Depósito legal: NA-183/2004 (December 2003)

    Google Scholar 

  7. Pablo, C., Lluís, J., Mata, X., Príncep, R., Naranjo, T.: Análisis cuantitativo de técnicas inmunohistoquímicas: Mejora de resultados mediante aplicación de software de análisis de imágenes digitales. In: Congreso Virtual Hispanoamericano de Anatomía Patológica, vol. 7 (October 2005)

    Google Scholar 

  8. Currie, W., Finnegan, D., Hamid, K.: 7. In: Integrating Electronic Health Record, 1st edn., pp. 135–182. Radcliffe Publishing (September 2009)

    Google Scholar 

  9. Grau, V., Mewes, A., Alcaniz, M., Kikinis, R., Warfield, S.: Improved watershed transform for medical image segmentation using prior information. IEEE Transactions on Medical Imaging 23(4), 447–458 (2004)

    Article  Google Scholar 

  10. Klingler Jr., J., Vaughan, C., Fraker Jr., T., Andrews, L.: Segmentation of echocardiographic images using mathematical morphology. IEEE Transactions on Biomedical Engineering 35(11), 925–934 (1988), doi:10.1109/10.8672

    Article  Google Scholar 

  11. Hamarneh, G., Li, X.: Watershed segmentation using prior shape and appearance knowledge. Image and Vision Computing 27(1-2), 59–68 (2009), doi:10.1016/j.imavis.2006.10.009

    Article  Google Scholar 

  12. Murashov, D., Federation, R.: Method for segmentation of low contrast cytological images based on the active contour model. In: Shokin, Y.I., Potaturkin, O.I. (ed.) Automation, Control, and Information Technology. Signal and Image Processing, Novosibirsk, Russia, International Association of Science and Technology for Development, pp. 44–49 (June 2005), Hardcopy ISBN: 0-88986-461-6; CD ISBN: 0-88986-477-2.

    Google Scholar 

  13. Brockett, R.W., Maragos, P.: Evolution equations for continuous-scale morphological filtering. IEEE Transactions on Signal Processing 42(12), 3377–3386 (1994), http://ieeexplore.ieee.org/assets/img/btn.pdf-access-full-text.gif , doi:10.1109/78.340774

    Article  Google Scholar 

  14. McOwen, R.C.: Partial Differential Equations. Tsinghua University Press, Beijing (2004)

    Google Scholar 

  15. Di Rubeto, C., Dempster, A., Khan, S., Jarra, B.: Segmentation of blood images using morphological operators. In: Proceedings of the 15th International Conference on Pattern Recognition, vol. 3, pp. 397–400. IEEE Computer Society, Washington, DC, USA (2000), doi:10.1109/ICPR.2000.903568

    Google Scholar 

  16. Srisang, W.: Segmentation of overlapping chromosome images using computational geometry. Computational Science, Walailak University, Nakhon Si Thammarat, Thailand. Krisanadej Jaroensutasinee, Contributor (December 2008)

    Google Scholar 

  17. Mohana Rao, K., Dempster, A.: Modification on distance transform to avoid over-segmentation and under-segmentation. In: Video/Image Processing and Multimedia Communications 4th EURASIP-IEEE Region 8 International Symposium on VIPromCom, pp. 295–301 (2002)

    Google Scholar 

  18. Beucher, S.: Numerical residues. Image and Vision Computing 25(4), 405–415 (2007) (received September 23, 2005; revised June 26, 2006; accepted July 31, 2006), Available online September 26, 2006, doi:10.1016/j.imavis.2006.07.020

    Article  Google Scholar 

  19. Davies, H.E., Sadler, R.S., Bielsa, S., Maskell, N.A., Rahman, N.M., Davies, R.J.O., Ferry, B.L., Lee, Y.C.: Clinical impact and reliability of pleural fluid mesothelin in undiagnosed pleural effusions. American Journal of Respiratory and Critical Care Medicine 180(5), 437–444 (2009), http://www.biomedsearch.com/nih/Clinical-impact-reliability-pleural-fluid/19299498.html , doi:10.1164/rccm.200811-1729OC

    Article  Google Scholar 

  20. Serra, J.: Image Analysis and Mathematical Morphology, vol. I. Academic Press, London (1982)

    MATH  Google Scholar 

  21. Serra, J.: Image Analysis and Mathematical Morphology. Theoretical Advances, vol. II. Academic Press, London (1988)

    Google Scholar 

  22. Soille, P.: Morphological Image Analysis. Springer, Berlin (1999), http://web.ukonline.co.uk/soille

    Book  MATH  Google Scholar 

  23. Beucher, S., Meyer, F.: 12. In: The Morphological Approach To Segmentation: The Watershed Transformation, pp. 433–481. Marcel Dekker, New York (1992), http://cmm.ensmp.fr/~beucher/publi/SB_watershed.pdf

    Google Scholar 

  24. Vachier, C., Meyer, F.: The viscous watershed transform. Journal of Mathematical Imaging and Vision 22(2-3), 251–267 (2005), doi:10.1007/s10851-005-4893-3

    Article  MathSciNet  Google Scholar 

  25. Beare, R.: Regularized seeded region growing. In: CSIRO Mathematical and Information Sciences, Locked Bag 17, North Ryde, Australia 1670, pp. 91–99. CSIRO Publishing (2002)

    Google Scholar 

  26. Nguyen, H.-T., Worring, M., Van Den Boomgaard, R.: Watersnakes: Energy-driven watershed segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(3), 330–342 (2003), doi:10.1109/TPAMI.2003.1182096

    Article  Google Scholar 

  27. Vargas-Vázquez, D., Crespo, J.L., Maojo, V.: Morphological image reconstruction with criterion from labelled markers. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 475–484. Springer, Heidelberg (2003), http://www.springerlink.com/content/n22peypd74j409xr/fulltext.pdf

    Chapter  Google Scholar 

  28. Vargas-Vázquez, D., Crespo, J., Maojo, V., Ríos-Moreno, J.G., Trejo-Perea, M.: Reconstruction with criterion from labeled markers: new approach based on the morphological watershed. Journal of Electronic Imaging 19(4), 043001 (2010), doi:10.1117/1.3491494

    Article  Google Scholar 

  29. Braendle, S.: Watershed algorithms with shape constraints. Master’s thesis, Swiss Federal Institute of Technology - ETH Zurich, Switzerland (April 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Béliz-Osorio, N., Crespo, J., García-Rojo, M., Muñoz, A., Azpiazu, J. (2011). Cytology Imaging Segmentation Using the Locally Constrained Watershed Transform. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds) Mathematical Morphology and Its Applications to Image and Signal Processing. ISMM 2011. Lecture Notes in Computer Science, vol 6671. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21569-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21569-8_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21568-1

  • Online ISBN: 978-3-642-21569-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics