Skip to main content

Hierarchical Segmentation of Multiresolution Remote Sensing Images

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNIP,volume 6671)

Abstract

The extraction of urban patterns from very high spatial resolution optical images presents challenges related to the size, the accuracy and the complexity of the data. In order to efficiently carry out this task, a multiresolution hierarchical approach is proposed. It enables to progressively segment several images (of increasing resolutions) of a same scene, based on low level criteria. The process, based on binary partition trees, is partially performed in an interactive fashion, and then automatically completed. Experiments on urban images datasets provide encouraging results which may be further used for detection and classification purpose.

Keywords

  • Hierarchical segmentation
  • multisource images
  • multiresolution
  • interactive/automated segmentation
  • partition-trees
  • remote sensing
  • urban analysis

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-21569-8_30
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-21569-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akcay, H.G., Aksoy, S.: Automatic detection of geospatial objects using multiple hierarchical segmentations. IEEE Transactions on Geoscience and Remote Sensing 46(7), 2097–2111 (2008)

    CrossRef  Google Scholar 

  2. Baatz, M., Hoffmann, C., Willhauck, G.: Progressing from object-based to object-oriented image analysis. In: Blaschke, T., Lang, S., Hay, G.J. (eds.) Object-Based Image Analysis. LNCS, ch. 1.2, pp. 29–42. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  3. Barnsley, M.J., Barr, S.L.: Distinguishing urban land-use categories in fine spatial resolution land-cover data using a graph-based, structural pattern recognition system. Computers, Environment and Urban Systems 21(3), 209–225 (1997)

    CrossRef  Google Scholar 

  4. Blaschke, T.: Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing 65(1), 2–16 (2010)

    CrossRef  Google Scholar 

  5. Gaetano, R., Scarpa, G., Poggi, G.: Hierarchical texture-based segmentation of multiresolution remote-sensing images. IEEE Transactions on Geoscience and Remote Sensing 47(7), 2129–2141 (2009)

    CrossRef  Google Scholar 

  6. Inglada, J., Michel, J.: Qualitative spatial reasoning for high-resolution remote sensing image analysis. IEEE Transactions on Geoscience and Remote Sensing 47(2), 599–612 (2009)

    CrossRef  Google Scholar 

  7. Kurtz, C., Passat, N., Gançarski, P., Puissant, A.: Multiresolution region-based clustering for urban analysis. International Journal of Remote Sensing 31(22), 5941–5973 (2010)

    CrossRef  Google Scholar 

  8. Kurtz, C., Puissant, A., Passat, N., Gançarski, P.: An interactive approach for extraction of urban patterns from multisource images. In: Symposium of JURSE 2011, Joint Urban Remote Sensing Event - 6th Joint Workshop on Remote Sensing and Data Fusion over Urban Areas (to appear, 2011)

    Google Scholar 

  9. Monasse, P., Guichard, F.: Scale-space from a level lines tree. Journal of Visual Communication and Image Representation 11(2), 224–236 (2000)

    CrossRef  Google Scholar 

  10. Pavlidis, T.: Structural pattern recognition. Springer, Heidelberg (1977)

    CrossRef  MATH  Google Scholar 

  11. Pesaresi, M., Benediktsson, J.A.: A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE Transactions on Geoscience and Remote Sensing 39(2), 309–320 (2001)

    CrossRef  Google Scholar 

  12. Puissant, A., Weber, C.: The utility of Very High Spatial Resolution images to identify urban objects. Geocarto International 17(1), 33–44 (2002)

    CrossRef  Google Scholar 

  13. Salembier, P., Garrido, L.: Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval. IEEE Transactions on Image Processing 9(4), 561–576 (2000)

    CrossRef  Google Scholar 

  14. Salembier, P., Oliveras, A., Garrido, L.: Antiextensive connected operators for image and sequence processing. IEEE Transactions on Image Processing 7(4), 555–570 (1998)

    CrossRef  Google Scholar 

  15. Serra, J.C., Salembier, P.: Connected operators and pyramids. In: Dougherty, E.R., Gader, P.D., Serra, J.C. (eds.) Image Algebra and Morphological Image Processing IV, vol. 2030, pp. 65–76. SPIE, San Diego (1993)

    CrossRef  Google Scholar 

  16. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)

    CrossRef  Google Scholar 

  17. Soille, P.: Constrained connectivity for hierarchical image decomposition and simplification. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(7), 1132–1145 (2008)

    CrossRef  Google Scholar 

  18. Soille, P.: Constrained connectivity for the processing of very-high-resolution satellite images. International Journal of Remote Sensing 31(22), 5879–5893 (2010)

    CrossRef  Google Scholar 

  19. Sun, W., Heidt, V., Gong, P., Xu, G.: Information fusion for rural land-use classification with high-resolution satellite imagery. IEEE Transactions on Geoscience and Remote Sensing 41(4), 883–890 (2003)

    CrossRef  Google Scholar 

  20. Valero, S., Salembier, P., Chanussot, J.: New hyperspectral data representation using binary partition tree. In: IEEE International Geoscience and Remote Sensing Symposium, vol. 2, pp. 80–83 (2010)

    Google Scholar 

  21. Vilaplana, V., Marques, F., Salembier, P.: Binary partition trees for object detection. IEEE Transactions on Image Processing 17(11), 2201–2216 (2008)

    MathSciNet  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kurtz, C., Passat, N., Puissant, A., Gançarski, P. (2011). Hierarchical Segmentation of Multiresolution Remote Sensing Images. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds) Mathematical Morphology and Its Applications to Image and Signal Processing. ISMM 2011. Lecture Notes in Computer Science, vol 6671. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21569-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21569-8_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21568-1

  • Online ISBN: 978-3-642-21569-8

  • eBook Packages: Computer ScienceComputer Science (R0)