Self Organizing Maps as Models of Social Processes: The Case of Electoral Preferences

  • Antonio Neme
  • Sergio Hernández
  • Omar Neme
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6731)

Abstract

We propose the use of self-organizing maps as models of social processes, in particular, of electoral preferences. In some voting districts patterns of electoral preferences emerge, such that in nearby areas citizens tend to vote for the same candidate whereas in geographically distant areas the most voted candidate is that whose political position is distant to the latter. Those patterns are similar to the spatial structure achieved by self-organizing maps. This model is able to achieve spatial order from disorder by forming a topographic map of the external field, identified with advertising from the media. Here individuals are represented in two spaces: a static geographical location, and a dynamic political position. The modification of the later leads to a pattern in which both spaces are correlated.

Keywords

Self-organizing maps electoral preferences social sciences and computational models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kohonen, T.: Self-Organizing maps, 3rd edn. Springer, Heidelberg (2000)MATHGoogle Scholar
  2. 2.
    Barreto, G., Araujo, A.: Identification and control of dynamical using the self-organizing map. IEEE Transactions on Neural Networks 15(5), 1244–1259 (2004)CrossRefGoogle Scholar
  3. 3.
    Galam, S.: The dynamics of minority opinions in democratic debates. Physica A 336, 46–62 (2004), doi:10.1016/j.physa.2004.01.010MathSciNetGoogle Scholar
  4. 4.
    Pabjan, B., Pekalski, A.: Model opinion forming and voting. Physica A 387, 6183–6189 (2008), doi:10.1016/j.physa.2008.07.003CrossRefGoogle Scholar
  5. 5.
    Costa, R., Almeida, M., Andrade, S., Moreira, M.: Scaling behavior in a proportional voting process. Phys. Rev. E. 60, 1067–1068 (1999)CrossRefGoogle Scholar
  6. 6.
    Tuncay, C.: Opinion Dynamics Driven by Leaders, Media, Viruses and Worms. Int. J. of Modern Physics C 18(5), 849–859 (2007)CrossRefMATHGoogle Scholar
  7. 7.
    González-Avella, J., Cosenza, M., Tucci, K.: Nonequilibrium transition induced by mass media in a model for social influence. Phys. Rev. E 72 (2005)Google Scholar
  8. 8.
    Mazzitello, K., Candia, J., Dossetti, V.: Effects of Mass Media and Cultural Drift in a Model for Social Influence. Int. J. Mod. Phys. C 18, 1475 (2007)CrossRefMATHGoogle Scholar
  9. 9.
    Villmann, T., Der, R., Herrmann, M., Martinetz, T.: Topology preservation in self-organizing feature maps. IEEE Tr. on NN. 8(2), 256–266 (1997)CrossRefGoogle Scholar
  10. 10.
    Flanagan, J.: Sufficiente conditions for self-organization in the SOM with a decreasing neighborhood function of any width. C. of Art. NN. Conf. pub. 470 (1999)Google Scholar
  11. 11.
    Erwin, E., Obermayer, K., Schulten, K.: Self-organizing maps: Ordering, convergence properties and energy functions. Biol. Cyb. 67, 47–55 (1992)CrossRefMATHGoogle Scholar
  12. 12.
    Erwin, E., Obermayer, K., Schulten, K.: self-organizing maps: stationary states, metastability and convergence rate. Biol. Cyb. 67, 35–45 (1992b)CrossRefMATHGoogle Scholar
  13. 13.
    Niemelä, P., Honkela, T.: Analysis of parliamentary election results and socio-economic situation using self-organizing map. In: Príncipe, J.C., Miikkulainen, R. (eds.) WSOM 2009. LNCS, vol. 5629, pp. 209–218. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Schelling, T.: Micromotives and Macrobehavior. W. W. Norton (1978)Google Scholar
  15. 15.
    Axelrod, R.: The dissemination of culture. J. of Confl. Res. 41, 203–226 (1997)CrossRefGoogle Scholar
  16. 16.
    Schulz, R., Reggia, J.: Temporally Asymmetric Learning Supports Sequence Processing in Multi-Winner Self-Organizing Maps. Neural Comp. 16(3), 535–561 (2004)CrossRefMATHGoogle Scholar
  17. 17.
    Flanagan, J.: Self-organization in the one-dimensional SOM with a decreasing neighborhood. Neural Networks 14(10), 1405–1417 (2001)CrossRefGoogle Scholar
  18. 18.
    Celluci, C., Albano, A., Rap, P.: Statistical validation of mutual information calculations. Phys. Rev. E 71, 66208 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Antonio Neme
    • 1
    • 2
    • 3
  • Sergio Hernández
    • 2
    • 3
  • Omar Neme
    • 4
  1. 1.Adaptive Informatics Research CentreAalto UniversityEspooFinland
  2. 2.Complex Systems GroupAutonomous University of Mexico CityMexico CityMexico
  3. 3.Centre for Complex SciencesNational Autonomous University of MexicoMexico
  4. 4.School of Economics National Polytechnic InstituteMexico CityMexico

Personalised recommendations