Traffic Engineering Approaches Using Multicriteria Optimization Techniques

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6649)


Nowadays, network planning and management tasks can be of high complexity, given the numerous inputs that should be considered to effectively achieve an adequate configuration of the underlying network. This paper presents an optimization framework that helps network administrators in setting the optimal routing weights of link state protocols according to the required traffic demands, contributing in this way to improve the service levels quality provided by the network infrastructure. Since the envisaged task is a NP-hard problem, the framework resorts to Evolutionary Computation as the optimization engine. The focus is given to the use of multi-objective optimization approaches given the flexibility they provide to network administrators in selecting the adequate solutions in a given context. Resorting to the proposed optimization framework the administrator is able to automatically obtain highly optimized routing configurations adequate to support the requirements imposed by their customers. In this way, this novel approach effectively contributes to enhance and automate crucial network planning and management tasks.


Traffic engineering Network design and network planning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wang, Z.: Internet QoS: Architectures and Mechanisms for Quality of Service. Morgan Kaufmann Publishers, San Francisco (2001)Google Scholar
  2. 2.
    Fortz, B., Thorup, M.: Internet Traffic Engineering by Optimizing OSPF Weights. In: Proceedings of IEEE INFOCOM, pp. 519–528 (2000)Google Scholar
  3. 3.
    Dijkstra, E.W.: A note on Two Problems in Connexion with Graphs. Numerische Mathematik 1(269–271) (1959)Google Scholar
  4. 4.
    Sousa, P., Rocha, M., Rio, M., Cortez, P.C.: Efficient OSPF Weight Allocation for Intra-domain QoS Optimization. In: Parr, G., Malone, D., Ó Foghlú, M. (eds.) IPOM 2006. LNCS, vol. 4268, pp. 37–48. Springer, Heidelberg (2006)Google Scholar
  5. 5.
    Rocha, M., Sousa, P., Cortez, P., Rio, M.: Quality of Service Constrained Routing Optimization using Evolutionary Computation. Applied Soft Computing 11(1), 356–364 (2011)Google Scholar
  6. 6.
    Medina, A., et al.: Traffic matrix estimation: Existing techniques and new directions. Computer Communication Review 32(4), 161–176 (2002)Google Scholar
  7. 7.
    Davy, A., Botvich, D., Jennings, B.: An Efficient Process for Estimation of Network Demand for QoS-Aware IP Network Planning. In: Parr, G., Malone, D., Ó Foghlú, M. (eds.) IPOM 2006. LNCS, vol. 4268, pp. 120–131. Springer, Heidelberg (2006)Google Scholar
  8. 8.
    Gunnar, A., Johansson, M., Telkamp, T.: Traffic matrix estimation on a large IP backbone: a comparison on real data. In: IMC 2004: Proceedings of the 4th ACM SIGCOMM Conference on Internet Measurement, pp. 149–160 (2004)Google Scholar
  9. 9.
    Ahuja, R., Magnanti, T., Orlin, J.: Network Flows. Prentice Hall, Englewood Cliffs (1993)Google Scholar
  10. 10.
    Moy, J.: RFC 2328: OSPF version 2 (April 1998)Google Scholar
  11. 11.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer, USA (1998)Google Scholar
  12. 12.
    Moy, J.: OSPF, Anatomy of an Internet Routing Protocol. Addison Wesley, Reading (1998)Google Scholar
  13. 13.
    Medina, A.L.A., Matta, I., Byers, J.: BRITE: Universal Topology Generation from a Users Perspective, Tech. Rep. 2001-003 (January 2001)Google Scholar
  14. 14.
    Sousa, P., Rocha, M., Cortez, P., Rio, M.: Multiconstrained Optimization of Networks with Multicast and Unicast Traffic. In: Pavlou, G., Ahmed, T., Dagiuklas, T. (eds.) MMNS 2008. LNCS, vol. 5274, pp. 139–150. Springer, Heidelberg (2008)Google Scholar
  15. 15.
    Sousa, P., Rocha, M., Rio, M., Cortez, P.: Class-Based OSPF Traffic Engineering Inspired on Evolutionary Computation. In: Boavida, F., Monteiro, E., Mascolo, S., Koucheryavy, Y. (eds.) WWIC 2007. LNCS, vol. 4517, pp. 141–152. Springer, Heidelberg (2007)Google Scholar
  16. 16.
    Coello, C.: A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques. Knowledge and Information Systems 1(3), 129–156 (1999)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2011

Authors and Affiliations

  1. 1.Dept. of InformaticsUniversity of MinhoPortugal
  2. 2.Dep. of Electronic and Electrical EngineeringUCLUK
  3. 3.Dep. of Information SystemsUniversity of MinhoPortugal

Personalised recommendations