Increase the Security of Multibiometric Systems by Incorporating a Spoofing Detection Algorithm in the Fusion Mechanism

  • Emanuela Marasco
  • Peter Johnson
  • Carlo Sansone
  • Stephanie Schuckers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6713)


The use of multimodal biometric systems has been encouraged by the threat of spoofing, where an impostor fakes a biometric trait. The reason lies on the assumption that, an impostor must fake all the fused modalities to be accepted. Recent studies showed that there is a vulnerability of the existing fusion schemes in presence of attacks where only a subset of the fused modalities is spoofed. In this paper, we demonstrated that, by incorporating a liveness detection algorithm in the fusion scheme, the multimodal system results robust in presence of spoof attacks involving only a subset of the fused modalities. The experiments were carried out by analyzing different fusion rules on the Biosecure multimodal database.


Fusion Rule Fusion Frame Multimodal System Biometric Trait Spoof Attack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jain, A., Ross, A., Prabhakar, S.: An introduction to biometric recognition. IEEE Transaction on Circuits and Systems for Video 14(1), 4–20 (2004)CrossRefGoogle Scholar
  2. 2.
    Yamada, K., Matsumoto, T., Matsumoto, H., Hoshino, S.: Impact of artificial gummy fingers on fingerprint systems. Optical Security and Counterfait Deterrence Techniques IV 4677, 275–289 (2002)CrossRefGoogle Scholar
  3. 3.
    Kittler, J., Li, Y.P., Matas, J., Sanchez, M.U.R.: Combining evidence in multimodal personal identity recognition systems. In: International Conference on Audio- and Video-based Biometric Person Authentication (1997)Google Scholar
  4. 4.
    Ross, A., Jain, A.: Information fusion in biometrics. Pattern Recognition Letters 24, 2115–2125 (2003)CrossRefGoogle Scholar
  5. 5.
    Ross, A., Jain, A.: Handbook in MultiBiometrics. Springer, Heidelberg (2008)Google Scholar
  6. 6.
    Rodrigues, R.N., Kamat, N., Govindaraju, V.: Evaluation of biometric spoofing in a multimodal system. In: IEEE International Conference on Biometrics, BTAS (2010)Google Scholar
  7. 7.
    Johnson, P.A., Tan, B., Schuckers, S.: Multimodal fusion vulnerability to non-zero effort (spoof) imposters. In: IEEE International Workshop on Information Forensics and Security, WIFS (2010)Google Scholar
  8. 8.
    Poh, N.: École Polytechnique Fédéral de Lausanne. In: Multi-system biometric authentication: optimal fusion and user-specific information (2006)Google Scholar
  9. 9.
    Roli, F., Kittler, J., Fumera, G., Muntoni, D.: An experimental comparison of classifier fusion rules for multimodal personal identity verification systems. In: Roli, F., Kittler, J. (eds.) MCS 2002. LNCS, vol. 2364, pp. 325–336. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Dass, S., Nandakumar, K., Jain, A.: A principled approach to score level fusion in multimodal biometric systems. In: Fifth AVBPA, July 2005, pp. 1049–1058 (2005)Google Scholar
  11. 11.
    Vatsa, M., Singh, R., Noore, A., Ross, A.: On the dynamic selection of biometric fusion algorithms. IEEE Transaction on Information Forensics and Security 5(3), 470–479 (2010)CrossRefGoogle Scholar
  12. 12.
    Nandakumar, K., Chen, Y., Dass, S., Jain, A.: Likelihood ratio-based biometric score fusion. IEEE Transaction on Pattern Analysis and Machine Intelligence 30(2), 342–347 (2008)CrossRefGoogle Scholar
  13. 13.
    Marasco, E., Sansone, C.: An anti-spoofing technique using multiple textural features in fingerprint scanners. In: IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications (BioMs), pp. 8–14 (2010)Google Scholar
  14. 14.
    Marcialis, G.L., Lewicke, A., Tan, B., Coli, P., Grimberg, D., Congiu, A., Tidu, A., Roli, F., Schuckers, S.: First international fingerprint liveness detection competition—livDet 2009. In: Foggia, P., Sansone, C., Vento, M. (eds.) ICIAP 2009. LNCS, vol. 5716, pp. 12–23. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Poh, N., Bourlai, T., Kittler, J.: A multimodal biometric test bed for quality-dependent, cost-sensitive and client-specific score-level fusion algorithms. Pattern Recognition 43, 1094–1105 (2010)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Emanuela Marasco
    • 1
  • Peter Johnson
    • 2
  • Carlo Sansone
    • 1
  • Stephanie Schuckers
    • 2
  1. 1.Dipartimento di Informatica e SistemisticaUniversità degli Studi di Napoli Federico IINapoliItaly
  2. 2.Department of Electrical and Computer EngineeringClarkson UniversityPotsdamUSA

Personalised recommendations