Functional Magnetic Resonance Imaging

  • William F. EddyEmail author
  • Rebecca L. McNamee
Part of the Springer Handbooks of Computational Statistics book series (SHCS)


The 2003 Nobel Prize in Medicine went to Paul Lauterbur and Sir Peter Mansfield for the invention of magnetic resonance imaging (MRI) in the 1970s. Since its invention MRI has rapidly changed the world of medicine; there are currently more than 20,000 MRI scanners in the world and many millions of images are generated by them each year. In the early 1990s, Ogawa et al. (1992), Belliveau et al. (1991) and Kwong et al. (1992) showed that MRI could be used for the detection of brain function.


Blood Oxygen Level Dependent fMRI Data Statistical Parametric Mapping Functional Magnetic Resonance Image Larmor Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Belliveau, J.W., Kennedy, D.N., McKinstry, R.C., Buchbinder, B.R., Weisskoff, R.M., Cohen, M.S., Vevea, J.M., Brady, T.J., Rosen, B.R.: Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254, 716–719 (1991)CrossRefGoogle Scholar
  2. Biswal, B., DeYoe, E.A., Hyde, J.S.: Reduction of physiological fluctuations in fMRI using digital filters. Magn. Reson. Med. 35, 107–113 (1996)CrossRefGoogle Scholar
  3. Buxton, R.B.: Introduction to Functional Magnetic Resonance Imaging: Principles and Techniques, Cambridge University Press, Cambridge (2002)Google Scholar
  4. Cherry, S.R., Phelps, M.E.: Imaging brain function with positron emission tomography. In: Toga, A.W., Mazziotta, J.C. (eds.) Brain Mapping: The Methods. Academic Press, New York (1996)Google Scholar
  5. Chuang, K.H., Chen, J.H.: IMPACT: Image-based physiological artifacts estimation and correction technique for functional MRI. Magn. Reson. Med. 46, 344–353 (2001)CrossRefGoogle Scholar
  6. Dagli, M.S., Ingeholm, J.E., Haxby, J.V.: Localization of cardiac-induced signal change in fMRI. NeuroImage 9, 407–415 (1999)CrossRefGoogle Scholar
  7. Eddy, W.F., Fitzgerald, M., Genovese, C.R., Mockus, A., Noll, D.C.: Functional imaging analysis software – computational olio. In: Prat, A. (eds.) Proceedings in Computational Statistics, Physica, Heidelberg (1996a)Google Scholar
  8. Eddy, W.F., Fitzgerald, M., Noll, D.C.: Improved image registration by using Fourier interpolation. Magn. Reson. Med. 36, 923–931 (1996b)CrossRefGoogle Scholar
  9. Eddy, W.F., Fitzgerald, M., Genovese, C., Lazar, N., Mockus, A., Welling, J.: The challenge of functional magnetic resonance imaging. J. Comp. Graph. Stat. 8(3), 545–558 (1999); Adapted from: The challenge of functional magnetic resonance imaging. In Massive Data Sets, Proceedings of a Workshop, pp. 39–45. National Academy Press, Washington, DC (1996)Google Scholar
  10. Eddy, W.F., Young, T.K.: Optimizing the resampling of registered images. In: Bankman, I.N. (eds.) Handbook of Medical Imaging: Processing and Analysis. Academic Press, New York (2000)Google Scholar
  11. Eden, G.F., Zeffiro, T.A.: PET and fMRI in the detection of task-related brain activity: Implications for the study of brain development. In: Thacher, R.W., Lyon, G.R., Rumsey, J., Krasnegor, N.K. (eds.) Developmental NeuroImaging: Mapping the Development of Brain and Behavior, Academic Press, San Diego (1997)Google Scholar
  12. Finger, S.: Origins of Neuroscience: A History of Explorations Into Brain Function, Oxford University Press, Oxford (1994)Google Scholar
  13. Forman, S.D., Cohen, J.D., Fitzgerald, M., Eddy, W.F., Mintun, M.A., Noll, D.C.: Improved assessment of significant change in functional magnetic resonance imaging (fMRI): Use of a cluster size threshold. Magn. Reson. Med. 33, 636–647 (1995)CrossRefGoogle Scholar
  14. Friston, K.J., Williams, S., Howard, R., Frackowiak, R.S.J., Turner, R.: Movement-related effects in fMRI time-series. Magn. Reson. Med. 35, 346–355 (1996)CrossRefGoogle Scholar
  15. Gaillard, W.D., Grandin, C.B., Xu, B.: Developmental aspects of pediatric fMRI: Considerations for image acquisition, analysis, and interpretation. NeuroImage 13, 239–249 (2001)CrossRefGoogle Scholar
  16. Genovese, C.R.: A Bayesian time-course model for functional magnetic resonance imaging (with discussion). J. Am. Stat. Assoc. 95, 691–703 (2000)CrossRefGoogle Scholar
  17. Genovese, C.R., Lazar, N.A., Nichols, T.E.: Thresholding of statistical maps in neuroimaging using the false discovery rate. NeuroImage 15, 870–878 (2002)CrossRefGoogle Scholar
  18. Glad, I., Sebastiani, G.: A Bayesian approach to synthetic magnetic resonance imaging. Biometrika 82, 237–250 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  19. Glover, G.H., Li, T.Q., Ress, D.: Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn. Reson. Med. 44, 162–167 (2000)CrossRefGoogle Scholar
  20. Green, M.V., Seidel, J., Stein, S.D., Tedder, T.E., Kempner, K.M., Kertzman, C., Zeffiro, T.A.: Head movement in normal subjects during simulated PET brain imaging with and without head restraint. J. Nucl. Med. 35(9), 1538–1546 (1994)Google Scholar
  21. Guimaraes, A.R., Melcher, J.R., Talavage, T.M., Baker, A.J., Rosen, B.R., Weisskoff, R.M.: Detection of inferior colliculus activity during auditory stimulation using cardiac-gated functional MRI with T 1 correction. In: NeuroImage, 2nd International Conference on Functional Mapping of the Human Brain (1996)Google Scholar
  22. Hajnal, J.V., Myers,R., Oatridge, A., Schwieso, J.E., Young, I.R., Bydder, G.M.: Artifacts due to stimulus correlated motion in functional imaging of the brain. Magn. Reson. Med. 31, 283–291 (1994)CrossRefGoogle Scholar
  23. Harrison, L., Penny, W.D., Friston, K.: Multivariate Autoregressive Modeling of fMRI time series. NeuroImage 19(4), 1477–1491 (2003)CrossRefGoogle Scholar
  24. Hu, X., Le, T.H., Parrish, R., Erhard, P.: Retrospective estimation and correction of physiological fluctuation in functional MRI. Magn. Reson. Med. 34, 201–212 (1995)CrossRefGoogle Scholar
  25. Jezzard, P.: Sources of distortion in functional MRI data. Hum. Brain Map. 8, 80–85 (1999)CrossRefGoogle Scholar
  26. Jezzard, P., Balaban, R.S.: Correction for geometric distortions in echo planar images from B 0 field variations. Magn. Reson. Med. 34, 65–73 (1995)CrossRefGoogle Scholar
  27. Kim, B., Boes, J.L., Bland, P.H., Chenevert, T.L., Meyer, C.R.: Motion correction in fMRI via registration of individual slices into an anatomical volume. Magn. Reson. Med. 41, 964–972 (1999)CrossRefGoogle Scholar
  28. Kwong, K.K., Belliveau, J.W., Chesler, D.A., Goldberg, I.E., Weisskoff, R.M., Poncelet, B.P., Kennedy, D.N., Hoppel, B.E., Cohen, M.S., Turner, R., Cheng, H., Brady, T.J., Rosen, B.R.: Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Natl. Acad. Sci. USA 89, 5675 (1992)CrossRefGoogle Scholar
  29. Lange, N.: Statistical approaches to human brain mapping by functional magnetic resonance imaging. Stat. Med. 15, 389–428 (1996)CrossRefGoogle Scholar
  30. Lange, N., Zeger, S.L.: Non-linear Fourier time series analysis for human brain mapping by functional magnetic resonance imaging (with discussion). Appl. Stat. 46, 1–29 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  31. Lazar, N.A., Genovese, C.R., Eddy, W.F., Welling, J.: Statistical issues in fMRI for brain imaging. Int. Stat. Rev. 69, 105–127 (2001)CrossRefzbMATHGoogle Scholar
  32. Lee, C.C., Jack, C.R., Grimm, R.C., Rossman, P.J., Felmlee, J.P., Ehman, R.L., Riederer, S.J.: Real-time adaptive motion correction in functional MRI. Magn. Reson. Med. 36, 436–444 (1996)CrossRefGoogle Scholar
  33. Lee, C.C., Grimm, R.C., Manduca, A., Felmlee, J.P., Ehman, R.L., Riederer, S.J., Jack, C.R.: A prospective approach to correct for inter-image head rotation in FMRI. Magn. Reson. Med. 39, 234–243 (1998)CrossRefGoogle Scholar
  34. Logothetis, N.K.: The neural basis of the blood-oxygen level dependent functional magnetic resonance imaging signal. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 357(1424), 1003–1037 (2002)CrossRefGoogle Scholar
  35. McAllister, T.W., Saykin, A.J., Flashman, L.A., Sparling, M.B., Johnson, S.C., Guerin, S.J., Mamourian, A.C., Weaver, J.B., Yanofsky, N.: Brain activation during working memory 1 month after mild traumatic brain injury: A functional MRI study. Neurol. 53, 1300–1308 (1999)CrossRefGoogle Scholar
  36. McNamee, R.L., Eddy, W.F.: Correlations between cardiac data and fMRI data as a function of spatial frequency and time. In: Proceedings of the 2003 25th Annual International Conference of the IEEE-EMBS Society. Cancun, Mexico (2003)Google Scholar
  37. McNamee, R.L., Eddy, W.F.: Examination and removal of the spatial and time-related effects of physiological noise in fMRI data. (in preparation) (2004)Google Scholar
  38. Mitra, P.P., Pesaran, B.: Analysis of dynamic brain imaging data. Biophys. J. 78, 691–708 (1999)CrossRefGoogle Scholar
  39. Ogawa, S., Lee T.-M., Nayak, A.S., Glynn, P.: Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn. Reson. Med. 14, 680–78 (1990)CrossRefGoogle Scholar
  40. Ogawa, S., Tank, D.W., Menon, D.W., Ellermann, J.M., Kim, S., Merkle, H., Ugurbil, K.: Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping using MRI. Proc. Natl. Acad. Sci. USA 89, 5951–5955 (1992)CrossRefGoogle Scholar
  41. Poldrack, R.A.: Imaging brain plasticity: Conceptual and methodological issues – A theoretical review. NeuroImage 12, 1–13 (2000)CrossRefGoogle Scholar
  42. Rosen, A.C., Prull, M.W., O’Hara, R., Race, E.A., Desmond, J.E., Glover, G.H., Yesavage, J.A., Gabrieli, J.D.: Variable effects of aging on frontal lobe contributions to memory. NeuroReport 3(8), 2425–2428 (2002)CrossRefGoogle Scholar
  43. Schneider, W., Noll, D.C., Cohen, J.D.: Functional topographic mapping of the cortical ribbon in human vision with conventional MRI scanners. Nature 365, 150–153 (1993)CrossRefGoogle Scholar
  44. Stenger, V.A., Peltier, S., Boada, F.E., Noll, D.C.: 3D spiral cardiac/respiratory ordered fMRI data acquisition at 3 Tesla. Magn. Reson. Med. 41, 983–991 (1999)CrossRefGoogle Scholar
  45. Thulborn, K.R., Waterton, J.C., Matthews, P.M., Radda, G.K.: Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochem. Biophys. Acta. 714, 265–270 (1982)CrossRefGoogle Scholar
  46. Thulborn, K.R.: Visual feedback to stabilize head position for fMRI. Magn. Reson. Med. 41, 1039–1043 (1999)CrossRefGoogle Scholar
  47. Turner, R.: Functional mapping of the human brain with magnetic resonance imaging. Sem. Neurosci. 7, 179–194 (1995)CrossRefGoogle Scholar
  48. Villringer, A.: Physiological Changes During Brain Activation. In: Moonen, C.T.W., Bandettini, P.A. (eds.) Functional MRI, Springer, Berlin (2000)Google Scholar
  49. Weisskoff, R.M.: Simple measurement of scanner stability for functional NMR imaging of activation in the brain. Magn. Reson. Med. 36, 643–645 (1996)CrossRefGoogle Scholar
  50. Weisskoff, R.M., Kiihne, S.: MRI susceptometry: Image-based measurement of absolute susceptibility of MR contrast agents and human blood. Magn. Reson. Med. 24, 375–83 (1992)CrossRefGoogle Scholar
  51. Woods, R., Cherry, S., Mazziotta, J.: Rapid automated algorithm for aligning and reslicing PET images. J. Comp. Ass. Tomog. 16, 620–633 (1992)CrossRefGoogle Scholar
  52. Wowk, B., McIntyre, M.C., Saunders, J.K.: k-space detection and correction of physiological artifacts in fMRI. Magn. Reson. Med. 38, 1029–1034 (1997)CrossRefGoogle Scholar
  53. Zeffiro, T.: Clinical functional image analysis: Artifact detection and reduction. NeuroImage 4, S95–S100 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of StatisticsCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations