Part of the Springer Handbooks of Computational Statistics book series (SHCS)


Since the last decade we live in a digitalized world where many actions in human and economic life are monitored. This produces a continuous stream of new, rich and high quality data in the form of panels, repeated cross-sections and long time series. These data resources are available to many researchers at a low cost. This new era is fascinating for econometricians who can address many open economic questions. To do so, new models are developed that call for elaborate estimation techniques. Fast personal computers play an integral part in making it possible to deal with this increased complexity.


Monte Carlo Markov Chain Posterior Density Stochastic Volatility GARCH Model Monte Carlo Markov Chain Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allenby, G., Rossi, P.: Marketing models of consumer heterogeneity. J. Econometrics 89, 57–78 (1999)zbMATHCrossRefGoogle Scholar
  2. Bauwens, L., Galli, F.: Efficient importance sampling for ML estimation of SCD models. Comput. Stat. Data Anal. 53, 1974–1992 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  3. Bauwens, L., Giot, P.: Econometric Modelling of Stock Market Intraday Activity. Kluwer (2001)Google Scholar
  4. Bauwens, L., Hautsch, N.: Dynamic latent factor models for intensity processes. J. Financ. Econometrics 4, 450–493 (2006)CrossRefGoogle Scholar
  5. Bauwens, L., Rombouts, J.: Bayesian clustering of many GARCH models. Econometrics Rev. 26, 365–386 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  6. Bauwens, L., Rombouts, J.: On marginal likelihood computation in change-point models, Forthcoming in Computational Statistics & Data Analysis. CORE DP 2009/61 (2009)Google Scholar
  7. Bauwens, L., Veredas, D.: The stochastic conditional duration model: a latent factor model for the analysis of financial durations. J. Econometrics 119, 381–412 (2004)MathSciNetCrossRefGoogle Scholar
  8. Bhat, C.: Quasi-random maximum simulated likelihood estimation of the mixed multinomial logit model. Transp. Res. Part B 35, 677–693 (2001)CrossRefGoogle Scholar
  9. Bollerslev, T., Engle, R., Nelson, D.: ARCH models. In: Engle, R., McFadden, D. (eds.) Handbook of Econometrics, chapter 4, pp. 2959–3038. North Holland Press, Amsterdam (1994)CrossRefGoogle Scholar
  10. Brownstone, D., Train, K.: Forecasting new product penetration with flexible substitution patterns. J. Econometrics 89, 109–129 (1999)zbMATHCrossRefGoogle Scholar
  11. Chib, S.: Marginal likelihood from the Gibbs output. J. Am. Stat. Assoc. 90, 1313–1321 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  12. Chib, S.: Estimation and comparison of multiple change-point models. J. Econometrics 86, 221–241 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  13. Chib, S., Greenberg, E.: Analysis of multivariate probit models. Biometrika 85, 347–361 (1998)zbMATHGoogle Scholar
  14. Chib, S., Hamilton, B.: Bayesian analysis of cross-section and clustered data treatment models. J. Econometrics 97, 25–50 (2000)zbMATHCrossRefGoogle Scholar
  15. Chib, S., Nardari, F., Shephard, N.: Markov chain Monte Carlo methods for stochastic volatility models. J. Econometrics 108, 291–316 (2002)MathSciNetCrossRefGoogle Scholar
  16. Chintagunta, P., Honore, B.: Investigating the effects of marketing variables and unobserved heterogeneity in a multinomial probit model. Int. J. Res. Market. 13, 1–15 (1996)CrossRefGoogle Scholar
  17. Cowles, M., Carlin, B.: Markov chain Monte Carlo convergence diagnostics: A comparative review. J. Am. Stat. Assoc. 91, 883–904 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  18. Cribari-Neto, F.: Econometric programming environnments: Gauss, Ox and S-plus. J. Appl. Econometrics 12:77–89 (1997)CrossRefGoogle Scholar
  19. Danielson, J.: Stochastic volatility in asset prices: estimation with simulated maximum likelihood. J. Econometrics 61, 375–400 (1994)CrossRefGoogle Scholar
  20. de Jong, P., Shephard, N.: The simulation smoother for time series models. Biometrika 82, 339–350 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  21. Deb, P., Trivedi, P.: Demand for medical care by the elderly: A finite mixture approach. J. Appl. Econometrics 12, 313–336 (1997)CrossRefGoogle Scholar
  22. Diebolt, J., Robert, C.: Estimation of finite mixture distributions through Bayesian sampling. J. Roy. Stat. Soc. B 56, 363–375 (1994)MathSciNetzbMATHGoogle Scholar
  23. Durbin, J., Koopman, S.: Monte Carlo maximum likelihood estimation for non-Gaussian state space models. Biometrika 84:669–684 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  24. Durbin, J., Koopman, S.: Time series analysis of non-Gaussian observations based on state space models from both classical and Bayesian perspectives. J. Roy. Stat. Soc. B 62, 3–56 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  25. Fan, J., Yao, Q.: Nonlinear Time Series, (2nd edn.), Springer, Berlin (2006)Google Scholar
  26. Feng, D., Jiang, G.J., Song, P.X.-K.: Stochastic conditional duration models with leverage effect for financial transaction data. J. Financ. Econometrics 2, 390–421 (2004)CrossRefGoogle Scholar
  27. Franses, P., Paap, R.: Quantitative Models in Marketing Research. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  28. Frühwirth-Schnatter, S.: Markov chain Monte Carlo estimation of classical and dynamic switching and mixture models. J. Am. Stat. Assoc. 96, 194–209 (2001)zbMATHCrossRefGoogle Scholar
  29. Frühwirth-Schnatter, S., Kaufmann, S.: Model-based clustering of multiple time series. J. Bus. Econ. Stat. 26, 78–89 (2008)CrossRefGoogle Scholar
  30. Geweke, J., Keane, M., Runkle, D.: Statistical inference in the multinomial multiperiod probit model. J. Econometrics 80, 125–165 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  31. Ghysels, E., Harvey, A., Renault, E.: Stochastic volatility. In: Maddala, G., Rao, C. (eds.) Handbook of Statistics, pp. 119–191. Elsevier Science, Amsterdam (1996)Google Scholar
  32. Giordani, P., Kohn, R.: Efficient bayesian inference for multiple change-point and mixture innovation models. J. Bus. Econ. Stat. 26, 66–77 (2008)MathSciNetCrossRefGoogle Scholar
  33. Gouriéroux, C., Monfort, A.: Simulation-based Econometric Methods. Oxford University Press, Oxford (1997)CrossRefGoogle Scholar
  34. Hajivassiliou, V., Mc Fadden, D.: The method of simulated scores for the estimation of LDV models. Econometrica 66, 863–896 (1998)Google Scholar
  35. Hajivassiliou, V., Ruud, P.: Classical estimation methods for LDV models using simulation. In: Handbook of Econometrics, Vol. 4, Chapter 40, North Holland, Amsterdam (1994)Google Scholar
  36. Hamilton, J.: A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica 57, 357–384 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  37. Hawkes, A.G.: Spectra of some self-exciting and mutually exciting point processes. Biometrika 58, 83–90 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  38. Horowitz, J.: Semiparametric Methods in Econometrics. Springer, Berlin (1998)zbMATHGoogle Scholar
  39. Jacquier, E., Polson, N., Rossi, P.: Bayesian analysis of stochastic volatility models (with discussion). J. Bus. Econ. Stat. 12, 371–417 (1994)Google Scholar
  40. Jacquier, E., Polson, N., Rossi, P.: Bayesian analysis of stochastic volatility models with fat-tails and correlated errors. J. Econometrics 122, 185–212 (2004)MathSciNetCrossRefGoogle Scholar
  41. Kim, C.-J., Nelson, C.R.: Has the U.S. economy become more stable? a Bayesian approach based on a Markov-switching model of the business cycle. Rev. Econ. Stat. 81, 608–616 (1999)Google Scholar
  42. Kim, S., Shephard, N., Chib, S.: Stochastic volatility: likelihood inference and comparison with ARCH models. Rev. Econ. Stud. 65, 361–393 (1998)zbMATHCrossRefGoogle Scholar
  43. Koop, G., Potter, S.: Estimation and forecasting with multiple breaks. Rev. Econ. Stud. 74, 763–789 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  44. Li, Q., Racine, J.S.: Nonparametric Econometrics: Theory and Practice. Princeton University Press, USA (2006)Google Scholar
  45. Liesenfeld, R., Richard, J.-F.: Univariate and multivariate stochastic volatility models: estimation and diagnostics. J. Empir. Finance 10, 505–531 (2003)CrossRefGoogle Scholar
  46. Liu, C., Maheu, J.: Are there structural breaks in realized volatility? J. Financ. Econometrics 6, 326–360 (2008)CrossRefGoogle Scholar
  47. Maddala, G.: Limited-dependent and Qualitative Variables in Econometrics. Cambridge University Press, Cambridge (1983)zbMATHGoogle Scholar
  48. Mariano, R., Schuermann, T., Weeks, M.: Simulation-based Inference in Econometrics. Cambridge University Press, Cambridge (2000)zbMATHCrossRefGoogle Scholar
  49. McCulloch, R., Polson, N., Rossi, P.: A Bayesian analysis of the multinomial probit model with fully identified parameters. J. Econometrics 99, 173–193 (2000)zbMATHCrossRefGoogle Scholar
  50. McFadden, D., Train, K.: Mixed MNL models for discrete response. J. Appl. Econometrics 15, 447–470 (2000)CrossRefGoogle Scholar
  51. Paap, R., Franses, P.: A dynamic multinomial probit model for brand choice with different long-run and short-run effects of marketing-mix variables. J. Appl. Econometrics 15, 717–744 (2000)CrossRefGoogle Scholar
  52. Pagan, A., Ullah, A.: Nonparametric Econometrics. Cambridge University Press, Cambridge (1999)Google Scholar
  53. Pastor, L., Stambaugh, R.F.: The equity premium and structural breaks. J. Finan. 56, 1207–1239 (2001)CrossRefGoogle Scholar
  54. Pesaran, M.H., Pettenuzzo, D., Timmermann, A.: Forecasting time series subject to multiple structural breaks. Rev. Econ. Stud. 73, 1057–1084 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  55. Richard, J.-F., Zhang, W.: Efficient high-dimensional Monte Carlo importance sampling. J. Econometrics 141, 1385–1411 (2007)MathSciNetCrossRefGoogle Scholar
  56. Richardson, S., Green, P.: On Bayesian analysis of mixtures with an unknown number of components. J. Roy. Stat. Soc. B 59, 731–792 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  57. Russell, J.: Econometric modeling of multivariate irregularly-spaced high-frequency data. Manuscript, University of Chicago, Illinois, USA (1999)Google Scholar
  58. Sandman, G., Koopman, S.: Estimation of stochastic volatility models via Monte Carlo maximum likelihood. J. Econometrics 67, 271–301 (1998)CrossRefGoogle Scholar
  59. Shephard, N.: Statistical aspects of ARCH and stochastic volatility, In: Cox, D.R., Hinkley, D.V., Barndorff-Nielsen, O.E. (eds.) chapter 1, pp. 1–67. Time Series Models: In Econometrics, Finance and Other Fields. Chapman & Hall, London (1996)Google Scholar
  60. Strickland, C., Forbes, C., Martin, G.: Bayesian analysis of the stochastic conditional duration model. Comput. Stat. Data Anal. 50, 2247–2267 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  61. Tanner, M., Wong, W.: The calculation of posterior distributions by data augmentation. J. Am. Stat. Assoc. 82, 528–540 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  62. Train, K.: Discrete Choice Methods with Simulation. Cambridge University Press, Cambridge (2003)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Université Catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.HEC Montréal, CIRANO, CIRPEE, COREMontrealCanada

Personalised recommendations