Random Number Generation

Chapter
Part of the Springer Handbooks of Computational Statistics book series (SHCS)

Abstract

The fields of probability and statistics are built over the abstract concepts of probability space and random variable. This has given rise to elegant and powerful mathematical theory, but exact implementation of these concepts on conventional computers seems impossible. In practice, random variables and other random objects are simulated by deterministic algorithms. The purpose of these algorithms is to produce sequences of numbers or objects whose behavior is very hard to distinguish from that of their “truly random” counterparts, at least for the application of interest. Key requirements may differ depending on the context.For Monte Carlo methods, the main goal is to reproduce the statistical properties on which these methods are based, so that the Monte Carlo estimators behave as expected, whereas for gambling machines and cryptology, observing the sequence of output values for some time should provide no practical advantage for predicting the forthcoming numbers better than by just guessing at random.

References

  1. Aiello, W., Rajagopalan, S., Venkatesan, R.: Design of practical and provably good random number generators. J. Algorithm. 29(2), 358–389 (1998)MathSciNetMATHCrossRefGoogle Scholar
  2. Asmussen, S., Glynn, P.W. Stochastic simulation, Springer, New York (2007)MATHGoogle Scholar
  3. Blum, L., Blum, M., Schub, M.: A simple unpredictable pseudo-random number generator. SIAM J. Comput. 15(2), 364–383 (1986)MathSciNetMATHCrossRefGoogle Scholar
  4. Bratley, P., Fox, B.L., Schrage, L.E.: A Guide to Simulation. (2nd edn.), Springer, New York, NY (1987)CrossRefGoogle Scholar
  5. Brown, M., Solomon, H.: On combining pseudorandom number generators. Ann. Stat. 1, 691–695 (1979)MathSciNetCrossRefGoogle Scholar
  6. Chen, H.C., Asau, Y.: On generating random variates from an empirical distribution. AIEE Trans. 6, 163–166 (1974)CrossRefGoogle Scholar
  7. Cheng, R.C.H.: Random variate generation. In: Banks, J. (eds.) Handbook of Simulation, pp. 139–172. Wiley (1998); chapter 5.Google Scholar
  8. Collings, B.J.: Compound random number generators. J. Am. Stat. Assoc. 82(398), 525–527 (1987)MATHCrossRefGoogle Scholar
  9. Conway, J.H., Sloane, N.J.A.: Sphere packings, lattices and groups. (3rd edn.) Grundlehren der Mathematischen Wissenschaften 290. Springer, New York (1999)Google Scholar
  10. Couture, R., L’Ecuyer, P.: On the lattice structure of certain linear congruential sequences related to AWC/SWB generators. Math. Comput. 62(206), 798–808 (1994)MathSciNetGoogle Scholar
  11. Couture, R., L’Ecuyer, P.: Orbits and lattices for linear random number generators with composite moduli. Math. Comput. 65(213), 189–201 (1996)MathSciNetMATHCrossRefGoogle Scholar
  12. Couture, R., L’Ecuyer, P.: Distribution properties of multiply-with-carry random number generators. Math. Comput. 66(218), 591–607 (1997)MathSciNetMATHCrossRefGoogle Scholar
  13. Couture, R., L’Ecuyer, P.: Lattice computations for random numbers. Math. Comput. 69(230), 757–765 (2000)MathSciNetMATHGoogle Scholar
  14. Deng, L.-Y.: Efficient and portable multiple recursive generators of large order. ACM Trans. Model. Comput. Simulat. 15(1), 1–13 (2005)MATHCrossRefGoogle Scholar
  15. Deng, L.-Y., George, E.O.: Generation of uniform variates from several nearly uniformly distributed variables. Comm. Stat. B19(1), 145–154 (1990)MathSciNetGoogle Scholar
  16. Deng, L.-Y., Lin, D.K.J.: Random number generation for the new century. Am. Stat. 54(2), 145–150 (2000)MathSciNetGoogle Scholar
  17. Deng, L.-Y., Xu, H.: A system of high-dimensional, efficient, long-cycle and portable uniform random number generators. ACM Trans. Model. Comput. Simulat. 13(4), 299–309 (2003)MATHCrossRefGoogle Scholar
  18. Devroye, L.: Non-uniform Random Variate Generation, Springer, New York, NY (1986)MATHCrossRefGoogle Scholar
  19. Devroye, L.: Nonuniform random variate generation. In: Simulation, Henderson, S.G., Nelson, B.L. (eds.) Handbooks in Operations Research and Management Science, pp. 83–121. Elsevier, Amsterdam, Netherlands (2006); Chapter 4.Google Scholar
  20. Eichenauer-Herrmann, J.: Pseudorandom number generation by nonlinear methods. Int. Stat. Rev. 63, 247–255 (1995)MATHCrossRefGoogle Scholar
  21. Eichenauer-Herrmann, J., Herrmann, E., Wegenkittl, S.: A survey of quadratic and inversive congruential pseudorandom numbers. In: Hellekalek, P., Larcher, G., Niederreiter, H., Zinterhof, P. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 1996, Lecture Notes in Statistics, vol. 127, pp. 66–97. Springer, New York, NY (1998)Google Scholar
  22. Evans, M., Swartz, T.: Approximating Integrals via Monte Carlo and Deterministic Methods, Oxford University Press, Oxford, UK (2000)Google Scholar
  23. Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Math. Comput. 44, 463–471 (1985)MathSciNetMATHCrossRefGoogle Scholar
  24. Fishman, G.S.: Monte Carlo: Concepts, Algorithms, and applications. Springer Series in Operations Research. Springer, New York, NY (1996)MATHGoogle Scholar
  25. Gentle, J.E.: Random Number Generation and Monte Carlo methods. (2nd edn.), Springer, New York, NY (2003)MATHGoogle Scholar
  26. Goresky, M., Klapper, A.: Efficient multiply-with-carry random number generators with maximal period. ACM Trans. Model. Comput. Simulat. 13(4), 310–321 (2003)MATHCrossRefGoogle Scholar
  27. Hellekalek, P., Wegenkittl, S.: Empirical evidence concerning AES. ACM Trans. Model. Comput. Simulat. 13(4), 322–333 (2003)CrossRefGoogle Scholar
  28. Hörmann, W., Leydold, J.: Dec. Automatic random variate generation for simulation input. In: Joines, J.A., Barton, R.R., Kang, K., Fishwick, P.A. (eds.) In: Proceedings of the 2000 Winter Simulation Conference, pp. 675–682. IEEE Press, Pistacaway, NJ (2000)Google Scholar
  29. Hörmann, W., Leydold, J.: Continuous random variate generation by fast numerical inversion. ACM Trans. Model. Comput. Simulat. 13(4), 347–362 (2003)CrossRefGoogle Scholar
  30. Hörmann, W., Leydold, J., Derflinger, G.: Automatic Nonuniform Random Variate Generation. Springer, Berlin (2004)MATHGoogle Scholar
  31. Kinderman, A.J., Monahan, J.F.: Computer generation of random variables using the ratio of uniform deviates. ACM Trans. Math. Software 3, 257–260 (1977)MATHCrossRefGoogle Scholar
  32. Knuth, D.E.: The art of Computer Programming, Seminumerical Algorithms, vol. 2, (3rd edn.) Addison-Wesley, Reading, MA (1998)Google Scholar
  33. Kronmal, R.A., Peterson, A.V.: An Acceptance-complement Analogue of the Mixture-plus-acceptance-rejection Method for Generating Random Variables. ACM Trans. Math. Software 10, 271–281 (1984)MathSciNetMATHCrossRefGoogle Scholar
  34. Lagarias, J.C.: Pseudorandom numbers. Stat. Sci. 8(1), 31–39 (1993)MathSciNetCrossRefGoogle Scholar
  35. Law, A.M., Kelton, W.D.: Simulation Modeling and Analysis. (3rd edn.), McGraw-Hill, New York, NY (2000)Google Scholar
  36. L’Ecuyer, P.: Random numbers for simulation. Comm. ACM 33(10), 85–97 (1990)CrossRefGoogle Scholar
  37. L’Ecuyer, P.: Uniform random number generation. Ann. Oper. Res. 53, 77–120 (1994)MathSciNetMATHCrossRefGoogle Scholar
  38. L’Ecuyer, P.: Combined multiple recursive random number generators. Oper. Res. 44(5), 816–822 (1996a)MATHCrossRefGoogle Scholar
  39. L’Ecuyer, P.: Maximally equidistributed combined Tausworthe generators. Math. Comput. 65(213), 203–213 (1996b)MathSciNetMATHCrossRefGoogle Scholar
  40. L’Ecuyer, P.: Bad lattice structures for vectors of non-successive values produced by some linear recurrences. INFORMS J. Comput. 9(1), 57–60 (1997)MathSciNetMATHCrossRefGoogle Scholar
  41. L’Ecuyer, P.: Random number generation. In: Banks, J. (eds.) Handbook of Simulation, pp. 93–137. Wiley (1998); chapter 4.Google Scholar
  42. L’Ecuyer, P.: Good parameters and implementations for combined multiple recursive random number generators. Oper. Res. 47(1), 159–164 (1999a)MathSciNetMATHCrossRefGoogle Scholar
  43. L’Ecuyer, P.: Tables of linear congruential generators of different sizes and good lattice structure. Math. Comput. 68(225), 249–260 (1999b)MathSciNetMATHCrossRefGoogle Scholar
  44. L’Ecuyer, P.: Tables of maximally equidistributed combined LFSR generators. Math. Comput. 68(225), 261–269 (1999c)MathSciNetMATHCrossRefGoogle Scholar
  45. L’Ecuyer, P.: Software for uniform random number generation: Distinguishing the good and the bad. In: Proceedings of the 2001 Winter Simulation Conference, pp. 95–105. IEEE Press, Pistacaway, NJ (2001)Google Scholar
  46. L’Ecuyer, P.: Polynomial integration lattices. In: Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2002, pp. 73–98. Springer, Berlin (2004)CrossRefGoogle Scholar
  47. L’Ecuyer, P.: SSJ: A Java library for stochastic simulation. Software user’s guide, available at http://www.iro.umontreal.ca/~lecuyer (2008)
  48. L’Ecuyer, P.: Quasi-Monte Carlo methods with applications in finance. Finance Stochast. 13(3), 307–349 (2009)MathSciNetMATHCrossRefGoogle Scholar
  49. L’Ecuyer, P., Andres, T.H.: A random number generator based on the combination of four LCGs. Math. Comput. Simul. 44, 99–107 (1997)MathSciNetMATHCrossRefGoogle Scholar
  50. L’Ecuyer, P., Blouin, F., Couture, R.: A search for good multiple recursive random number generators. ACM Trans. Model. Comput. Simulat. 3(2), 87–98 (1993)MATHCrossRefGoogle Scholar
  51. L’Ecuyer, P., Côté, S.: Implementing a random number package with splitting facilities. ACM Trans. Math. Software 17(1), 98–111 (1991)MathSciNetMATHCrossRefGoogle Scholar
  52. L’Ecuyer, P., Couture, R.: An implementation of the lattice and spectral tests for multiple recursive linear random number generators. INFORMS J. Comput. 9(2), 206–217 (1997)MathSciNetMATHCrossRefGoogle Scholar
  53. L’Ecuyer, P., Granger-Piché, J.: Combined generators with components from different families. Math. Comput. Simul. 62, 395–404 (2003)MATHCrossRefGoogle Scholar
  54. L’Ecuyer, P., Hellekalek, P.: Random number generators: Selection criteria and testing. In: Hellekalek, P., Larcher, G. (eds.) Random and Quasi-Random Point Sets, Lecture Notes in Statistics, vol. 138, pp. 223–265. Springer New York, NY (1998)CrossRefGoogle Scholar
  55. L’Ecuyer, P., Lemieux, C.: Variance reduction via lattice rules. Manag. Sci. 46(9), 1214–1235 (2000)MATHCrossRefGoogle Scholar
  56. L’Ecuyer, P., Lemieux, C.: Recent advances in randomized quasi-Monte Carlo methods. In: Dror, M., L’Ecuyer, P., Szidarovszky, F. (eds.) Modeling Uncertainty: An Examination of Stochastic Theory, Methods, and Applications, pp. 419–474. Kluwer Academic, Boston (2002)Google Scholar
  57. L’Ecuyer, P., Mandjes, M., Tuffin, B.: Importance sampling and rare event simulation. In: Rubino, G., Tuffin, B. (eds.) Rare Event Simulation Using Monte Carlo Methods, 17–38. Wiley (2009); Chapter 2.Google Scholar
  58. L’Ecuyer, P., Panneton, F.: Construction of equidistributed generators based on linear recurrences modulo 2. In: Fang, K.-T., Hickernell, F.J., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 318–330. Springer, Berlin (2002)CrossRefGoogle Scholar
  59. L’Ecuyer, P., Panneton, F.: F 2-linear random number generators. In: Alexopoulos, C., Goldsman, D.J.R. (eds.) Advancing the Frontiers of Simulation: A Festschrift in Honor of George Samuel Fishman, Wilson, pp. 169–193. Springer, New York (2009)Google Scholar
  60. L’Ecuyer, P., Proulx, R.: Dec. About polynomial-time “unpredictable” generators. In: Proceedings of the 1989 Winter Simulation Conference, pp. 467–476: IEEE Press, New York (1989)Google Scholar
  61. L’Ecuyer, P., Simard, R.: Beware of linear congruential generators with multipliers of the form a =  ± 2q ± 2r. ACM Trans. Math. Software 25(3), 367–374 (1999)MATHCrossRefGoogle Scholar
  62. L’Ecuyer, P., Simard, R.: On the performance of birthday spacings tests for certain families of random number generators. Math. Comput. Simul. 55(1–3), 131–137 (2001)MathSciNetMATHCrossRefGoogle Scholar
  63. L’Ecuyer, P., Simard, R.: TestU01: A C library for empirical testing of random number generators. ACM Trans. Math. Software 33(4), Article 22 (2007)Google Scholar
  64. L’Ecuyer, P., Simard, R., Chen, E.J., Kelton, W.D.: An object-oriented random-number package with many long streams and substreams. Oper. Res. 50(6), 1073–1075 (2002)CrossRefGoogle Scholar
  65. L’Ecuyer, P., Simard, R., Wegenkittl, S.: Sparse serial tests of uniformity for random number generators. SIAM J. Sci. Comput. 24(2), 652–668 (2002)MathSciNetMATHCrossRefGoogle Scholar
  66. L’Ecuyer, P., Tezuka, S.: Structural properties for two classes of combined random number generators. Math. Comput. 57(196), 735–746 (1991)MathSciNetMATHGoogle Scholar
  67. L’Ecuyer, P., Touzin, R.: Fast combined multiple recursive generators with multipliers of the form a =  ± 2q ± 2r. In: Joines, J.A., Barton, R.R., Kang, K., Fishwick, P.A. (eds.) Proceedings of the 2000 Winter Simulation Conference, pp. 683–689. IEEE Press, Pistacaway, NJ (2000)Google Scholar
  68. L’Ecuyer, P., Touzin, R.: On the Deng-Lin random number generators and related methods. Stat. Comput. 14, 5–9 (2004)MathSciNetCrossRefGoogle Scholar
  69. Leeb, H.: Random numbers for computer simulation. Master’s thesis, University of Salzburg (1995)Google Scholar
  70. Lemieux, C., L’Ecuyer, P.: Randomized polynomial lattice rules for multivariate integration and simulation. SIAM J. Sci. Comput. 24(5), 1768–1789 (2003)MathSciNetMATHCrossRefGoogle Scholar
  71. Leydold, J.: Automatic sampling with the ratio-of-uniform method. ACM Trans. Math. Software 26(1), 78–98 (2000)MATHCrossRefGoogle Scholar
  72. Leydold, J.: UNU.RAN—universal non-uniform random number generators. Available at http://statmath.wu.ac.at/unuran/ (2009)
  73. Luby, M.: Pseudorandomness and cryptographic applications. Princeton: Princeton University Press (1996)MATHGoogle Scholar
  74. Lüscher, M.: A portable high-quality random number generator for lattice field theory simulations. Comput. Phys. Comm. 79, 100–110 (1994)MathSciNetMATHCrossRefGoogle Scholar
  75. Marsaglia, G.: A current view of random number generators. In Computer Science and Statistics, Sixteenth Symposium on the Interface, pp. 3–10. Elsevier Science Publishers, North-Holland, Amsterdam (1985)Google Scholar
  76. Marsaglia, G.: The Marsaglia random number CDROM including the DIEHARD battery of tests of randomness. See http://stat.fsu.edu/pub/diehard (1996)
  77. Marsaglia, G., Zaman, A.: A new class of random number generators. Ann. Appl. Probab. 1, 462–480 (1991)MathSciNetMATHCrossRefGoogle Scholar
  78. Marsaglia, G., Zaman, A., Marsaglia, J.C.W.: Rapid evaluation of the inverse normal distribution function. Stat. Probab. Lett. 19, 259–266 (1994)MathSciNetMATHCrossRefGoogle Scholar
  79. Matsumoto, M., Kurita, Y.: Twisted GFSR generators. ACM Trans. Model. Comput. Simul. 2(3), 179–194 (1992)MATHCrossRefGoogle Scholar
  80. Matsumoto, M., Kurita, Y.: Twisted GFSR generators II. ACM Trans. Model. Comput. Simul. 4(3), 254–266 (1994)MATHCrossRefGoogle Scholar
  81. Matsumoto, M., Kurita, Y.: Strong deviations from randomness in m-sequences based on trinomials. ACM Trans. Model. Comput. Simul. 6(2), 99–106 (1996)MATHCrossRefGoogle Scholar
  82. Matsumoto, M., Nishimura, T.: Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998)MATHCrossRefGoogle Scholar
  83. Nelsen, R.B.: An introduction to copulas, Lecture Notes in Statistics. vol. 139, Springer, New York, NY (1999)Google Scholar
  84. Nelson, B.L., Yamnitsky, M.: Input modeling tools for complex problems. In: Proceedings of the 1998 Winter Simulation Conference, pp. 105–112. IEEE Press, Piscataway, NJ (1998)Google Scholar
  85. Niederreiter, H.: Random number generation and quasi-Monte Carlo methods, SIAM CBMS-NSF Regional Conference Series in Applied Mathematics. vol. 63 SIAM, Philadelphia, PA (1992)Google Scholar
  86. Niederreiter, H.: The multiple-recursive matrix method for pseudorandom number generation. Finite Fields Appl. 1, 3–30 (1995)MathSciNetMATHCrossRefGoogle Scholar
  87. Niederreiter, H., Shparlinski, I.E.: Recent advances in the theory of nonlinear pseudorandom number generators. In: Fang, K.-T., Hickernell, F.J., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 86–102. Springer, Berlin (2002)CrossRefGoogle Scholar
  88. Nishimura, T.: Tables of 64-bit Mersenne twisters. ACM Trans. Model. Comput. Simul. 10(4), 348–357 (2000)CrossRefGoogle Scholar
  89. Panneton, F., L’Ecuyer, P.: Random number generators based on linear recurrences in \({F}_{{2}^{w}}\). In: Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2002, pp. 367–378. Springer, Berlin (2004)CrossRefGoogle Scholar
  90. Panneton, F., L’Ecuyer, P.: On the xorshift random number generators. ACM Trans. Model. Comput. Simul. 15(4), 346–361 (2005)CrossRefGoogle Scholar
  91. Panneton, F., L’Ecuyer, P., Matsumoto, M.: Improved long-period generators based on linear recurrences modulo 2. ACM Trans. Math. Software 32(1), 1–16 (2006)MathSciNetCrossRefGoogle Scholar
  92. Read, T.R.C., Cressie, N.A.C.: Goodness-of-fit statistics for discrete multivariate data. Springer Series in Statistics. Springer, New York, NY (1988)MATHGoogle Scholar
  93. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M., Vangel, M., Banks, D., Heckert, A., Dray, J., Vo, S.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. NIST special publication 800-22, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA (2001); See http://csrc.nist.gov/rng/.
  94. Tausworthe, R.C.: Random numbers generated by linear recurrence modulo two. Math. Comput. 19, 201–209 (1965)MathSciNetMATHCrossRefGoogle Scholar
  95. Tezuka, S.: Uniform random numbers: Theory and practice. Kluwer Academic Publishers, Norwell, MA (1995)MATHGoogle Scholar
  96. Tezuka, S., L’Ecuyer, P.: Efficient and portable combined Tausworthe random number generators. ACM Trans. Model. Comput. Simul. 1(2), 99–112 (1991)MATHCrossRefGoogle Scholar
  97. Tezuka, S., L’Ecuyer, P., Couture, R.: On the add-with-carry and subtract-with-borrow random number generators. ACM Trans. Model. Comput. Simul. 3(4), 315–331 (1994)CrossRefGoogle Scholar
  98. Tootill, J.P.R., Robinson, W.D., Eagle, D.J.: An asymptotically random Tausworthe sequence. J. ACM 20, 469–481 (1973)MATHCrossRefGoogle Scholar
  99. Vattulainen, I., Ala-Nissila, T., Kankaala, K.: Physical models as tests of randomness. Phys. Rev. E 52(3), 3205–3213 (1995)MathSciNetCrossRefGoogle Scholar
  100. von Neumann, J.: Various techniques used in connection with random digits. In: A.S.H. et al. (eds.) The Monte Carlo Method, vol. 12, pp. 36–38. National Bureau of Standards, Applied Mathematics Series (1951)Google Scholar
  101. Walker, A.J.: An efficient method for generating discrete random variables with general distributions. ACM Trans. Math. Software 3, 253–256 (1977)MATHCrossRefGoogle Scholar
  102. Wang, D., Compagner, A.: On the use of reducible polynomials as random number generators. Math. Comput. 60, 363–374 (1993)MathSciNetMATHCrossRefGoogle Scholar
  103. Wegenkittl, S., Matsumoto, M.: Getting rid of correlations among pseudorandom numbers: Discarding versus tempering. ACM Trans. Model. Comput. Simul. 9(3), 282–294 (1999)CrossRefGoogle Scholar
  104. Wu, P.-C.: Multiplicative, congruential random number generators with multiplier \(\pm {2}^{{k}_{1}} \pm{2}^{{k}_{2}}\) and modulus 2p − 1. ACM Trans. Math. Software 23(2), 255–265 (1997)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Département d’Informatique et de Recherche OpérationnelleUniversité de MontréalMontréalCanada

Personalised recommendations