Mining Customer Loyalty Card Programs: The Improvement of Service Levels Enabled by Innovative Segmentation and Promotions Design

  • V. L. Miguéis
  • A. S. Camanho
  • João Falcão e Cunha
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 82)


A good relationship between companies and customers is a crucial factor of competitiveness. The improvement of service levels has become a key issue to develop and maintain a loyal relationship with customers. This paper proposes a method for promotions design for retailing companies, based on knowledge extraction from transactions records of customer loyalty cards, aiming to improve service levels and increase sales. At first, customers are segmented using k-means and then the segments’ profile is characterized according to the rules extracted from a decision tree. This is followed by the identification of product associations within segments, which can base the identification of the products most suitable for customized promotions. The research reported is done in collaboration with an European retailing company.


Customer services Clustering Classification Market Basket Analysis Retailing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Keaveney, S.M.: Customer switching behavior in service industries: An exploratory study. The Journal of Marketing 59(2), 71–82 (1995)CrossRefGoogle Scholar
  2. 2.
    Zeithaml, V.: Delivering quality service: balancing customer perceptions and expectations. Free Press, Collier Macmillan, New York, London (1990)Google Scholar
  3. 3.
    Hackl, P., Scharitzer, D., Zuba, R.: Customer satisfaction in the austrian food retail market. Total Quality Management 11(7), 999 (2000)CrossRefGoogle Scholar
  4. 4.
    Gómez, M.I., McLaughlin, E.W., Wittink, D.R.: Customer satisfaction and retail sales performance: an empirical investigation. Journal of Retailing 80(4), 265–278 (2004)CrossRefGoogle Scholar
  5. 5.
    Ngai, E., Xiu, L., Chau, D.: Application of data mining techniques in customer relationship management: A literature review and classification. Expert Systems with Applications 36(2, Part 2), 2592–2602 (2009)CrossRefGoogle Scholar
  6. 6.
    Smith, W.R.: Product differentiation and market segmenattion as alternative marketing strategies. Journal of Marketing 21(1), 3–8 (1956)CrossRefGoogle Scholar
  7. 7.
    Robinson, J.: The Economics of Imperfect Competition, 2nd edn. Palgrave Macmillan, London (1938)Google Scholar
  8. 8.
    Twedt, D.W.: How important to marketing strategy is the ”Heavy user”? The Journal of Marketing 28(1), 71–72 (1964)CrossRefGoogle Scholar
  9. 9.
    Frank, R.E., Massy, W.F., Boyd, H.W.: Correlates of grocery product consumption rates. Journal of Marketing Research (JMR) 4(2), 184–190 (1967)CrossRefGoogle Scholar
  10. 10.
    Haley, R.I.: Benefit segmentation: A decision-oriented research tool. Journal of Marketing 32(3), 30–35 (1968)CrossRefGoogle Scholar
  11. 11.
    Lazer, W.: Lifestyle concepts and marketing. In: Toward Scientific Marketing. American Marketing Association, Chicago (1964)Google Scholar
  12. 12.
    Green, P.E., Wind, Y.: Multiattribute Decisions in Marketing. Dryden Press, Chicago (1973)Google Scholar
  13. 13.
    Blattberg, R., Buesing, T., Peacock, P., Sen, S.: Identifying deal prone segment. Journal of Marketing Research (JMR) 15(3), 369–377 (1978)CrossRefGoogle Scholar
  14. 14.
    Mitchell, A.: The nine American lifestyles: Who we are and where we’re going. Warner, New York (1983)Google Scholar
  15. 15.
    Piercy, N., Morgan, N.: Strategic and operational market segmentation: a managerial analysis. Journal of Strategic Marketing 1, 123–140 (1993)CrossRefGoogle Scholar
  16. 16.
    Dibb, S., Simkin, L.: A program for implementing market segmentation. Journal of Business & Industrial Marketing 12(1), 51–65 (1997)CrossRefGoogle Scholar
  17. 17.
    Kiang, M.Y., Hu, M.Y., Fisher, D.M.: An extended self-organizing map network for market segmentation–a telecommunication example. Decision Support Systems 42(1), 36–47 (2006)CrossRefGoogle Scholar
  18. 18.
    Min, S., Han, I.: Detection of the customer time-variant pattern for improving recommender systems. Expert Systems with Applications 28(2), 189–199 (2005)CrossRefGoogle Scholar
  19. 19.
    Helsen, K., Green, P.E.: A computational study of replicated clustering with an application to market-segmentation. Decision Sciences 22(5), 1124–1141 (1991)CrossRefGoogle Scholar
  20. 20.
    Bult, J.R., Wansbeek, T.: Optimal selection for direct mail. Marketing Science 14(4), 378 (1995)CrossRefGoogle Scholar
  21. 21.
    Liu, D., Shih, Y.: Integrating AHP and data mining for product recommendation based on customer lifetime value. Information & Management 42(3), 387–400 (2005)CrossRefGoogle Scholar
  22. 22.
    den Poel, D.V., Schamphelaere, J.D., Wets, G.: Direct and indirect effects of retail promotions on sales and profits in the do-it-yourself market. Expert Systems with Applications 27(1), 53–62 (2004)CrossRefGoogle Scholar
  23. 23.
    Brijs, T., Swinnen, G., Vanhoof, K., Wets, G.: Building an association rules framework to improve product assortment decisions. Data Mining and Knowledge Discovery 8(1), 7–23 (2004)CrossRefGoogle Scholar
  24. 24.
    Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review (1999)Google Scholar
  25. 25.
    Aaker, D.: Cluster analysis for applications. Academic Press, New York (1973)Google Scholar
  26. 26.
    Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society. Series B, Statistical methodology 63, 411–423 (2001)CrossRefGoogle Scholar
  27. 27.
    Davies, D., Bouldin, D.: Cluster separation measure. IEEE transactions on pattern analysis and machine intelligence 1(2), 224–227 (1979)CrossRefGoogle Scholar
  28. 28.
    Aldenderfer, M., Blashfield, R.: Cluster Analysis. Number 07-044. Sage Publications, Newbury Park (1984)CrossRefGoogle Scholar
  29. 29.
    Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc., San Francisco (1992)Google Scholar
  30. 30.
    Quinlan, J.R.: Induction of decision trees. Machine Learning 1(1), 81–106 (1986)Google Scholar
  31. 31.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules, pp. 487–499 (1994)Google Scholar
  32. 32.
    Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, Dallas, Texas, United States, pp. 1–12 (2000)Google Scholar
  33. 33.
    Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: New algorithms for fast discovery of association rules. Technical report, University of Rochester (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • V. L. Miguéis
    • 1
  • A. S. Camanho
    • 1
  • João Falcão e Cunha
    • 1
  1. 1.Faculdade de Engenharia da Universidade do PortoPortoPortugal

Personalised recommendations