Abstract
This paper describes a specific tool to automatically perform the segmentation and archiving of tissue microarray (TMA) cores in microscopy images at different magnification, that is, 5x, 10x, 20x and 40x. TMA enables researchers to extract small cylinder of single tissues (core sections) from histological sections and arrange them in an array on a paraffin block such that hundreds can be analyzed simultaneously. A crucial step to improve the speed and quality of these analyses is the correct recognition of each tissue position in the array. However, usually the tissue cores are not aligned in the microarray, the TMA cores are broken and the digital images are noisy. We develop a robust framework to handle core sections under these conditions. The algorithms are able to detect, stitch and archive the TMA cores. Once the TMA cores are segmented they are stored in a relational database allowing their location and classification for further studies of benign-malignant classification. The method was shown to be reliable for handling the TMA cores and therefore enabling further large scale molecular pathology investigations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chen, W., Reiss, M., Foran, D.: A prototype for unsupervised analysis of tissue microarrays for cancer research and diagnostics. IEEE Trans. on Information Technology in Biomedicine 8(2), 89–96 (2004)
Dell’Anna, R., Demichelis, F., Sboner, A., Barbareschi, M.: An automated procedure to properly handle digital images in large scale tissuemicroarray experiments. Comput. Methods and Programs in Biomedicine 79(3), 197–208 (2005)
Rimm, D., Camp, R., Charette, L., Olsen, D., Reiss, M.: Tissue microarray: A new technology for amplification of tissue resources. Cancer 7(1), 24–31 (2001)
Dhanasekaran, S.M., Barrette, T., Ghosh, D., Shah, R., Varambally, S., Kurachi, K., Pienta, K., Rubin, M., Chinnalyan, A.: Delineation of prognostic biomarkers in prostate cancer. Nature 412, 822–826 (2001)
Kuraya, K.A., Simon, R., Sauter, G.: Tissue microarrays for high-throughput molecular pathology. Ann. Saudi. Med. 24, 169–174 (2004)
Liu, C., Montgomery, K., Natkunam, Y., West, R., Nielsen, T., Cheang, M., Turbin, D., Marinelli, R., de Rijn, M.V., Higgins, J.: Tma-combiner, a simple software tool to permit analysis of replicate cores on tissue microarrays. Mod. Pathol. 18, 1641–1648 (2005)
Nohle, D., Hackman, B., Ayers, L.: The tissue micro-array data exchange specification: a web based experience browsing imported data. BMC Med. Inform. Decis. Mak. 5(25) (2005)
Rabinovich, A., Krajewski, S., Krajewska, M., et al.: Framework for parsing, visualizing and scoring tissue microarray images. IEEE Tran. on Information Technology in Biomedicine (2), 209–219 (2006)
Mea, V.D., Bin, I., Pandolfi, M., Loreto, C.D.: A web-based system for tissue microarray data management. Diagnostic Pathology 1, 31–36 (2006)
Demichelis, F., Sboner, A., Barbareschi, M., Dell’Anna, R.: Tmaboost: An integrated system for comprehensive management of tissue microarray data. IEEE Trans. on Information Technology in Biomedicine 10(1), 19–27 (2006)
Strömberg, S., Björklund, M., Asplund, C., Sköllermo, A., et al.: A high-throughput strategy for protein profiling in cell microarrays using automated image analysis. Proteomics 7, 2142–2150 (2007)
Shaknovich, R., Celestine, A., Yang, L., Cattoretti, G.: Novel relational database for tissue microarray analysis. Archives of Pathology Laboratory Medicine 127 (2003)
Liu, C., Prapong, W., Natkunam, Y., Alizadeh, A., Montgomery, K., Gilks, C., Rijn, M.: Software tools for high-throughput analysis and archiving of ihc staining data obtained with microarrays. Am. J. Pathol. 161(5), 1557–1565 (2002)
Morgan, J., Iacobuzio-Donahue, C., Razzaque, B., Faith, D., Marzo, A.D.: Tmaj: Open source software to manage a tissue microarray database. Proc. of APIII Meeting (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bueno, G., Fernández, M., Déniz, O., García-Rojo, M. (2011). Automatic Handling of Tissue Microarray Cores in High-Dimensional Microscopy Images. In: Cabestany, J., Rojas, I., Joya, G. (eds) Advances in Computational Intelligence. IWANN 2011. Lecture Notes in Computer Science, vol 6692. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21498-1_34
Download citation
DOI: https://doi.org/10.1007/978-3-642-21498-1_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21497-4
Online ISBN: 978-3-642-21498-1
eBook Packages: Computer ScienceComputer Science (R0)