CAI 2011: Algebraic Informatics pp 115-126

# Codes and Combinatorial Structures from Circular Planar Nearrings

• Anna Benini
• Achille Frigeri
• Fiorenza Morini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6742)

## Abstract

Nearrings are generalized rings in which addition is not in general abelian and only one distributive law holds. Some interesting combinatorial structures, as tactical configurations and balanced incomplete block designs (BIBDs) naturally arise when considering the class of planar and circular nearrings. In [12] the authors define the concept of disk and prove that in the case of field-generated planar circular nearrings it yields a BIBD, called disk-design. In this paper we present a method for the construction of an association scheme which makes the disk-design, in some interesting cases, an union of partially incomplete block designs (PBIBDs). Such designs can be used in the construction of some classes of codes for which we are able to calculate the parameters and to prove that in some cases they are also cyclic.

## Keywords

Binary codes Planar circular nearring PBIB design

## References

1. 1.
Aichinger, E., Binder, F., Ecker, J., Mayr, P., Nöbauer, C.: SONATA - system of near-rings and their applications, GAP package, Version 2 (2003), http://www.algebra.uni-linz.ac.at/Sonata/
2. 2.
Aichinger, E., Ecker, J., Nöbauer, C.: The use of computers in near-rings theory. In: Fong, Y., et al. (eds.) Near-Rings and Near-Fields, pp. 35–41 (2001)Google Scholar
3. 3.
Assmus Jr., E., Key, J.: Designs and their codes. Cambridge Tracts in Mathematics, vol. 103. Cambridge University Press, Cambridge (1992)
4. 4.
Bannai, E.: An introduction to association schemes. Quad. Mat. 5, 1–70 (1999)
5. 5.
Beth, T., Jungnickel, D., Lenz, H.: Design Theory. Cambridge University Press, Cambridge (1999)
6. 6.
Clay, J.: Nearrings: Geneses and Applications. Oxford University Press, Oxford (1992)
7. 7.
Clay, J.: Geometry in fields. Algebra Colloq. 1(4), 289–306 (1994)
8. 8.
Cramwinckel, J., Roijackers, E., Baart, R., Minkes, E., Ruscio, L., Joyner, D.: GUAVA, a GAP Package for computing with error-correcting codes (2009), http://www.opensourcemath.org/guava/
9. 9.
Davis, P.: Circulant Matrices. Chelsea Publishing, New York (1994)
10. 10.
Eggetsberger, R.: On extending codes from finite Ferrero pairs. Contributions to General Algebra 9, 151–162 (1994)
11. 11.
Eggetsberger, R.: Circles and their interior points from field generated Ferrero pairs. In: Saad, G., Thomsen, M. (eds.) Nearrings, Nearfields and K-Loops, pp. 237–246 (1997)Google Scholar
12. 12.
Frigeri, A., Morini, F.: Circular planar nearrings: geometrical and combinatorial aspects (submitted), http://arxiv.org/
13. 13.
Fuchs, P.: A decoding method for planar near-ring codes. Riv. Mat. Univ. Parma 4(17), 325–331 (1991)
14. 14.
Fuchs, P., Hofer, G., Pilz, G.: Codes from planar near-rings. IEEE Trans. Inform. Theory 36, 647–651 (1990)
15. 15.
Hopper, N., von Ahn, L., Langford, J.: Provably secure steganography. IEEE Transactions on Computers 58(5), 662–676 (2009)
16. 16.
Lancaster, P., Timenetsky, M.: The Theory of Matrices with Applications. Academic Press, New York (1985)Google Scholar
17. 17.
McWilliams, F., Sloane, N.: The Theory of Error-correcting Codes. North-Holland, Amsterdam (1977)Google Scholar
18. 18.
Meir, O.: IP=PSPACE using Error Correcting Codes. Electronic Colloquium on Computational Complexity 17(137) (2010)Google Scholar
19. 19.
Street, A., Street, D.: Combinatorics of Experimental Design. Oxford University Press, New York (1987)

## Authors and Affiliations

• Anna Benini
• 1
• Achille Frigeri
• 2
• Fiorenza Morini
• 3
1. 1.Università di BresciaItaly
2. 2.Politecnico di MilanoItaly
3. 3.Università di ParmaItaly