Advertisement

Hadamard Matrices, Designs and Their Secret-Sharing Schemes

  • Christos Koukouvinos
  • Dimitris E. Simos
  • Zlatko Varbanov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6742)

Abstract

In this paper, we give some methods to generate new secret-sharing schemes from Hadamard matrices derived through orthogonal 3-designs. A close connection of Hadamard designs and secret-sharing schemes is shown. In addition, we survey some of the most prolific construction methods for Hadamard matrices thus providing the necessary structures to describe a two-part secret-sharing scheme based on Hadamard designs. Furthermore, we exhibit how some algebraic aspects of secret-sharing cryptography are interpreted in terms of combinatorial design theory, such as the access structure and the security of the secret-sharing schemes.

Keywords

Hadamard matrices Hadamard designs construction secret–sharing schemes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Assmus Jr., E.F., Key, J.D.: Designs and their codes. Cambridge University Press, Great Britain (1992)CrossRefzbMATHGoogle Scholar
  2. 2.
    Blakley, G.R.: Safeguarding cryptographic keys. In: Proc. of the 1979 AFIPS National Computer Conference, pp. 313–317 (1979)Google Scholar
  3. 3.
    Bosma, W., Cannon, J.: Handbook of Magma Functions, Version 2.9, Sydney (2002)Google Scholar
  4. 4.
    Bouyuklieva, S., Varbanov, Z.: Some connections between self-dual codes, combinatorial designs and secret-sharing schemes. Adv. Math. of Communications (to appear)Google Scholar
  5. 5.
    Cooper, J., Wallis, J.S.: A Construction for Hadamard Arrays, Bull. Austral. Math. Soc. 7, 269–278 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Craigen, R.: Hadamard Matrices and Designs. In: Colbourn, C.J., Dinitz, J.H. (eds.) The CRC Handbook of Combinatorial Designs, pp. 370–377. CRC Press, Boca Raton (1996)Google Scholar
  7. 7.
    Dougherty, S.T., Mesnager, S., Solé, P.: Secret-sharing schemes based on self-dual codes. In: Information Theory Workshop, Porto, May 5-9, pp. 338–342 (2008)Google Scholar
  8. 8.
    Geramita, A.V., Seberry, J.: Orthogonal Designs. In: Quadratic Forms and Hadamard Matrices. Lecture Notes in Pure and Applied Mathematics, vol. 45, Marcel Dekker, Inc., New York (1979)Google Scholar
  9. 9.
    Golay, M.J.E.: Complementary sequences. IRE Transactions on Information Theory 7, 82–87 (1961)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Golay, M. J. E.: Note on Complementary series. Proc. IRE (50), 84 (1962)Google Scholar
  11. 11.
    Hadamard, J.: Resolution d’une question relative aux determinants. Bull. des. Sci. Math. 17, 240–246 (1893)zbMATHGoogle Scholar
  12. 12.
    Horadam, K.J.: Hadamard matrices and their applications. Princeton University Press, Princeton (2007)CrossRefzbMATHGoogle Scholar
  13. 13.
    Hughes, D.R., Piper, F.C.: Design theory. Cambridge Univ. Press, Cambridge (1985)CrossRefzbMATHGoogle Scholar
  14. 14.
    Kharaghani, H., Koukouvinos, C.: Complementary, Base and Turyn Sequences. In: Colbourn, C.J., Dinitz, J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn., pp. 317–321. Chapman and Hall/CRC Press, Boca Raton, Fla (2006)Google Scholar
  15. 15.
    Kotsireas, I.S., Koukouvinos, C., Simos, D.E.: Inequivalent Hadamard matrices from base sequences. Util. Math. 78, 3–9 (2009)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Kotsireas, I.S., Koukouvinos, C., Simos, D.E.: Inequivalent Hadamard matrices from near normal sequences. J. Combin. Math. Combin. Comput. 75, 105–115 (2010)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Koukouvinos, C.: Sequences with Zero Autocorrelation. In: Colbourn, C.J., Dinitz, J.H. (eds.) The CRC Handbook of Combinatorial Designs, pp. 452–456. CRC Press, Boca Raton (1996)Google Scholar
  18. 18.
    Koukouvinos, C.: Undecided cases for D-optimal designs of order \(n \equiv 0 \pmod 4\), http://www.math.ntua.gr/~ckoukouv
  19. 19.
    Koukouvinos, C.: Base sequences BS(n + 1,n), http://www.math.ntua.gr/~ckoukouv
  20. 20.
    Koukouvinos, C., Seberry, J.: New weighing matrices and orthogonal designs constructed using two sequences with zero autocorrelation function - a review. J. Statist. Plann. Inference 81, 153–182 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Massey, J.L.: Some applications of coding theory in cryptography. In: Farrell, P.G. (ed.) Codes and Ciphers, Cryptography and Coding IV, pp. 33–47. Formara Lt, Esses, England (1995)Google Scholar
  22. 22.
    Paley, R.E.A.C.: On orthogonal matrices. Journal of Mathematics and Physics 12, 311–320 (1933)CrossRefzbMATHGoogle Scholar
  23. 23.
    Seberry, J., Yamada, M.: Hadamard Matrices, Sequences and Block Designs. In: Dinitz, J.H., Stinson, D.R. (eds.) Contemporary Design Theory: A Collection of Surveys, pp. 431–560. John Wiley & Sons, New York (1992)Google Scholar
  24. 24.
    Shamir, A.: How to share a secret. Communications of the ACM 22, 612–613 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Sylvester, J.J.: Thoughts on inverse orthogonal matrices, simultaneous sign successions, and tesselated pavements in two or more colours, with applications to Newton’s rule, ornamental tilework, and the theory of numbers. Phil. Mag. 34, 461–475 (1867)Google Scholar
  26. 26.
    Turyn, R.J.: Hadamard matrices, Baumert-Hall units, four-symbol sequences, pulse compression, and surface wave encoding. J. Combin. Theory A 16, 313–333 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Yang, C.H.: On hadamard matrices constructible by two circulant submatrices. Math. Comp. 25, 181–186 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Wallis, W.D., Street, A.P., Seberry, J., Wallis, J.: Combinatorics: Room Squares, Sum-Free Sets, Hadamard matrices. Lecture Notes in Mathematics, vol. 292. Springer, Heidelberg (1972)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Christos Koukouvinos
    • 1
  • Dimitris E. Simos
    • 1
  • Zlatko Varbanov
    • 2
  1. 1.Department of MathematicsNational Technical University of AthensAthensGreece
  2. 2.Department of Information TechnologiesUniversity of Veliko TarnovoBulgaria

Personalised recommendations