Rewriting in Varieties of Idempotent Semigroups

  • Ondřej Klíma
  • Miroslav Korbelář
  • Libor Polák
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6742)


We consider rewriting as a tool for solving identity problems in varieties of idempotent semigroups. It is known that there exist finite canonical term rewrite systems and finite canonical word rewrite systems for only a very limited number of those varieties. We present a finite canonical conditional word rewrite system for a particular variety in which the classical approaches cannot be applied. Moreover, we obtain infinite single letter deleting rewrite systems for each join-irreducible variety.


Rewriting identity problems varieties of semigroups 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baader, F.: Rewrite Systems for Varieties of Semigroups. In: Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp. 396–410. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  2. 2.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Camb. Univ. Press, Cambridge (1999)zbMATHGoogle Scholar
  3. 3.
    Birjukov, A.P.: Varieties of Idempotent Semigroups. Algebra i Logika 9, 255–273 (1970); English translation in Algebra and Logic 9, 153–164 (1971)MathSciNetGoogle Scholar
  4. 4.
    Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Springer, New York (1981)CrossRefzbMATHGoogle Scholar
  5. 5.
    Fennemore, C.F.: All Varieties of Bands I, II. Math. Nachr. 48, 237–252, 253-262 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gerhard, J.A.: The Lattice of Equational Classes of Idempotent Semigroups. J. Algebra 15, 195–224 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Klíma, O.: Ph.D. thesis: Unification Modulo Associativity and Idempotency (2003),
  8. 8.
    Neto, O., Sezinando, H.: Band Monoid Languages Revisited. Semigroup Forum 61(1), 32–45 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Newman, M.H.A.: On Theories with a Combinatorial Definition of ’Equivalence’. Annals of Mathematics 43(2), 223–243 (1942)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Nordahl, T.E.: On the Join of the Variety of All Bands and the Variety of All Commutative Semigroups via Conditional Rewrite Rules. In: Ito, M. (ed.) Words, Languages & Combinatorics, pp. 365–372. World Scientific, Singapore (1992)Google Scholar
  11. 11.
    Polák, L.: On Varieties of Completely Regular Semigroups I. Semigroup Forum 32, 97–123 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Polák, L.: On Varieties of Completely Regular Semigroups II. Semigroup Forum 36(3), 253–284 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Siekmann, J.H., Szabó, P.: A Noetherian and Confluent Rewrite System for Idempotent Semigroups. Semigroup Forum 25(1), 83–110 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Squier, C.C.: Word Problems and a Homological Finiteness Condition for Monoids. Journal of Pure and Applied Algebra 49, 201–217 (1987)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ondřej Klíma
    • 1
  • Miroslav Korbelář
    • 1
  • Libor Polák
    • 1
  1. 1.Department of Mathematics and StatisticsMasaryk UniversityBrnoCzech Republic

Personalised recommendations