Joint Spectral Radius Theory for Automated Complexity Analysis of Rewrite Systems

  • Aart Middeldorp
  • Georg Moser
  • Friedrich Neurauter
  • Johannes Waldmann
  • Harald Zankl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6742)


Matrix interpretations can be used to bound the derivational complexity of term rewrite systems. In particular, triangular matrix interpretations over the natural numbers are known to induce polynomial upper bounds on the derivational complexity of (compatible) rewrite systems. Recently two different improvements were proposed, based on the theory of weighted automata and linear algebra. In this paper we strengthen and unify these improvements by using joint spectral radius theory.


derivational complexity matrix interpretations weighted automata joint spectral radius 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bell, J.: A gap result for the norms of semigroups of matrices. LAA 402, 101–110 (2005)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata. Springer, Heidelberg (2009)zbMATHGoogle Scholar
  4. 4.
    Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. JAR 40(2-3), 195–220 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gebhardt, A., Hofbauer, D., Waldmann, J.: Matrix evolutions. In: WST 2007, pp. 4–8 (2007)Google Scholar
  6. 6.
    Geser, A., Hofbauer, D., Waldmann, J., Zantema, H.: On tree automata that certify termination of left-linear term rewriting systems. I&C 205(4), 512–534 (2007)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Hirokawa, N., Moser, G.: Automated complexity analysis based on the dependency pair method. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 364–379. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar
  9. 9.
    Jungers, R.M., Protasov, V., Blondel, V.D.: Efficient algorithms for deciding the type of growth of products of integer matrices. LAA 428(10), 2296–2311 (2008)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Jungers, R.: The Joint Spectral Radius: Theory and Applications. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Koprowski, A., Waldmann, J.: Arctic termination...Below zero. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 202–216. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Moser, G.: Proof Theory at Work: Complexity Analysis of Term Rewrite Systems. Habilitation thesis, University of Innsbruck (2009)Google Scholar
  13. 13.
    Moser, G., Schnabl, A.: The derivational complexity induced by the dependency pair method. LMCS (2011) (to appear),
  14. 14.
    Moser, G., Schnabl, A., Waldmann, J.: Complexity analysis of term rewriting based on matrix and context dependent interpretations. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FSTTCS 2008. LIPIcs, vol. 2, pp. 304–315. Schloss Dagstuhl, Dagstuhl (2008)Google Scholar
  15. 15.
    Neurauter, F., Zankl, H., Middeldorp, A.: Revisiting matrix interpretations for polynomial derivational complexity of term rewriting. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS(ARCoSS), vol. 6397, pp. 550–564. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Rose, H.E.: Linear Algebra: A Pure Mathematical Approach. Birkhäuser, Basel (2002)CrossRefzbMATHGoogle Scholar
  17. 17.
    Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, Cambridge (2009)CrossRefzbMATHGoogle Scholar
  18. 18.
    Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science, vol. 55. Cambridge University Press, Cambridge (2003)Google Scholar
  19. 19.
    Waldmann, J.: olynomially bounded matrix interpretations. In: Lynch, C. (ed.) RTA 2010. LIPIcs, vol. 6, pp. 357–372. Schloss Dagstuhl, Dagstuhl (2010)Google Scholar
  20. 20.
    Weber, A., Seidl, H.: On the degree of ambiguity of finite automata. TCS 88(2), 325–349 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Zankl, H., Korp, M.: Modular complexity analysis via relative complexity. In: Lynch, C. (ed.) RTA 2010. LIPIcs, vol. 6, pp. 385–400. Schloss Dagstuhl, Dagstuhl (2010)Google Scholar
  22. 22.
    Zankl, H., Middeldorp, A.: Satisfiability of non-linear (ir)rational arithmetic. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16. LNCS(LNAI), vol. 6355, pp. 481–500. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Aart Middeldorp
    • 1
  • Georg Moser
    • 1
  • Friedrich Neurauter
    • 1
  • Johannes Waldmann
    • 2
  • Harald Zankl
    • 1
  1. 1.Institute of Computer ScienceUniversity of InnsbruckAustria
  2. 2.Fakultät Informatik, Mathematik und NaturwissenschaftenHochschule für TechnikWirtschaft und Kultur LeipzigGermany

Personalised recommendations