Skip to main content

Models of the Gravid Uterus

  • Chapter
  • First Online:
Biomechanics of the Gravid Human Uterus

Abstract

During pregnancy the uterus evolves considerably with dynamic changes related to both special and temporal processes – a process that is closely controlled by intrinsic and extrinsic regulatory mechanisms. The gravid organ extends from the pelvis and occupies the lower and middle abdomen. It undergoes changes in size and structure to accommodate itself to the needs of the growing embryo – “uterine conversion” (Reynolds 1949).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Authors are familiar only with a single publication related to the study of dynamic biaxial properties of pregnant porcine uterine tissue by Manoogian et al. (2008).

References

  • Aelen P (2005) Determination of the uterine pressure with electrodes on the abodomen. PhD Thesis, Eindhoven Univ Technol, p. 30

    Google Scholar 

  • Ǻkerud A (2009) Uterine remodeling during pregnancy. PhD Thesis, Lund University, Sweden

    Google Scholar 

  • Benson AP, Clayton RH, Holden AV, Kharche S, Tong WC (2006) Endogenous driving and synchronization in cardiac and uterine virtual tissues: bifurcations and local coupling. Philos Transact A Math Phys Eng Sci 364:1313–1327

    Article  PubMed  CAS  Google Scholar 

  • Buhimchi CS, Buhimchi IA, Zhao G, Funai E, Peltecu G, Saade GR, Weiner CP (2007) Biomechanical properties of the lower uterine segment above and below the reflection of the urinary bladder flap. Obstet Gynecol 109(3):691–700

    Article  Google Scholar 

  • Bursztyn L, Eytan O, Jaffa AJ, Elad D (2007) Mathematical model of excitation-contraction in a uterine smooth muscle cell. Am J Physiol Cell Physiol 292:C1816–C1829

    Article  PubMed  CAS  Google Scholar 

  • Celeste P, Mercer B (2008) Myometrial thickness according to uterine site, gestational age and prior cesarean delivery. J Matern Fetal Neonatal Med 21(4):247–250

    Article  Google Scholar 

  • Conrad JT, Johnson WL, Kuhn WK, Hunter CA (1966a) Passive stretch relationships in human uterine muscle. Am J Obstet Gynecol 96:1055–1059

    PubMed  CAS  Google Scholar 

  • Conrad JT, Kuhn WK, Johnson WL (1966b) Stress relaxation in human uterine muscle. Am J Obstet Gynecol 95:254–265

    PubMed  CAS  Google Scholar 

  • Degani S, Leibovitz Z, Shapiro I, Gonen R, Ohel G (1998) Myometrial thickness in pregnancy: longitudinal sonographic study. J Ultrasound Med 10:661–665

    Google Scholar 

  • FitzHugh RA (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 79:917–1017

    Google Scholar 

  • Flügger W, Chou SC (1967) Large deformation theory of shells of revolution. J Appl Mech 34:56–58

    Article  Google Scholar 

  • Hai CM, Murphy RA (1988) Cross-bridge phosphorylation and regulation of latch state in smooth muscle. Am J Physiol Cell Physiol 254:C99–C106

    CAS  Google Scholar 

  • İrfanoğlu B, Karaesmen E (1993) A biomechanical model for the gravid uterus. In: Brebbia CA et al (eds) Trans Biomed Health, pp 59–65

    Google Scholar 

  • Jacquemet V (2006) Pacemaker activity resulting from the coupling with unexcitable cells. Phys Rev E 74:011908

    Article  Google Scholar 

  • Joyner RW, Wilders R, Wagner MB (2006) Propagation of pacemaker activity. Med Biol Eng Comput. doi:10.10007/s11517-006-0102-9

  • Karash YM (1970) Radiotelemetric investigation of fluctuations in intrauterine pressure during intervals between labor pains. Bull Exp Biol Med 70:861–863

    Article  Google Scholar 

  • La Rosa PS, Eswaran H, Preissl H, Nehorai A (2009) Forward modeling of uterine EMG and MMG contractions. Proceedings of the 11th World Congress on Medical Physics and Biomedical Engineering, Munich, Germany

    Google Scholar 

  • Manoogian SJ, McNally C, Stitzel JD, Duma SM (2008) Dynamic biaxial tissue properties of pregnant porcine uterine tissue. Stapp Car Crash J 52:167–185

    PubMed  Google Scholar 

  • Mizrahi J, Karni Z (1975) A mechanical model for uterine muscle activity during labor and delivery. Israel J Technol 13:185–191

    Google Scholar 

  • Mizrahi J, Karni Z (1981) A constitutive equation for isotropic smooth muscle. Israel J Technol 19:143–146

    Google Scholar 

  • Mizrahi J, Karni Z, Polishuk WZ (1978) A kinematic analysis of uterine deformation during labor. J Franklin Inst 306:119–132

    Article  Google Scholar 

  • Nagumo J, Animoto S, Yoshigawa S (1962) An active pulse transmission line simulating nerve axon. Proc Inst Radio Eng 50:2061–2070

    Google Scholar 

  • Paskaleva AP (2007) Biomechanics of cervical function in pregnancy – case of cervical insufficiency. PhD Thesis Dept Mech Eng Mass Inst Tech, USA 212 p

    Google Scholar 

  • Pearsall GW, Roberts VL (1978) Passive mechanical properties of uterine muscle (myometrium) tested in vitro. J Biomech 11:167–176

    Article  PubMed  CAS  Google Scholar 

  • Reynolds SRM (1949) Gestational mechanisms. In: Physiology of the uterus, 2nd edn. Hoeber, New York, pp 218–234

    Google Scholar 

  • Rice D, Yang T, Stanley P (1975) A simple model of the human cervix during the first stage of labor. J Biomech 9:153–163

    Article  Google Scholar 

  • Rihana S, Lefrançois E, Marque C (2007) A two dimensional model of the uterine electricalwave propagation. In: Proceedings of the 29th annual international conference of the IEEE EMBS, Lyon, France, August 23–26, pp 1109–1112

    Google Scholar 

  • Rihana S, Santos J, Marque C (2006) Dynamical analysis of uterine cell electrical activity model. In: Proceedings of the 28th annual international conference of the IEEE EMBS, New York, USA, August 30–September 3, pp 4179–4182

    Google Scholar 

  • Rihana S, Terrien J, Germain G, Marque C (2009) Mathematical modeling of electrical activity of uterine muscle cells. Med Biol Eng Comput 47:665–675

    Article  PubMed  Google Scholar 

  • Seitchik J, Chatkoff ML (1975) Intrauterine pressure wave-form characteristics of spontaneous first stage labor. J Appl Physiol 38:443–448

    PubMed  CAS  Google Scholar 

  • Sfakiani A, Buhimschi I, Pettker C, Magliore L, Turan O, Hamer B, Buhimschi C (2008) Ultrasonographic evaluation of myometrial thickness in twin pregnancies. Am J Obstet Gynecol 198(5):530, e1–10

    Google Scholar 

  • Vauge C, Carbonne B, Papiernik E, Ferré F (2000) A mathematical model of uterine dynamics and its application to human parturition. Acta Biotheor 48:95–105

    Article  PubMed  CAS  Google Scholar 

  • Vauge C, Mignot T-M, Paris B, Breulier-Fouché M, Chapron C, Attoui M, Ferré F (2003) A mathematical model for the spontaneous contractions of the isolated uterine smooth muscle from patients receiving progestin treatment. Acta Biotheor 51:19–34

    Article  PubMed  Google Scholar 

  • Weiss ST, Bajka M, Nava A, Mazza E, Niederer P (2004) A finite element model for the simulation of hydrometra. Technol Health Care 12:259–267

    PubMed  Google Scholar 

  • Wood C (1964a) Physiology of uterine contractions. J Obstet Gynaecol Br Commonw 71:360–373

    Article  PubMed  CAS  Google Scholar 

  • Wood C (1964b) The expansile behavior of the human uterus. J Obstet Gynaecol Br Commonw 71:615–620

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roustem N. Miftahof .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miftahof, R.N., Nam, H.G. (2011). Models of the Gravid Uterus. In: Biomechanics of the Gravid Human Uterus. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21473-8_2

Download citation

Publish with us

Policies and ethics