Skip to main content

Role of Aquatic Macrophytes in Biogeochemical Cycling of Heavy Metals, Relevance to Soil-Sediment Continuum Detoxification and Ecosystem Health

  • Chapter
  • First Online:

Part of the book series: Soil Biology ((SOILBIOL,volume 30))

Abstract

The wetland sediments and soils of floodplains play an important role in the biogeocycling of heavy metals. Aquatic macrophytes are important components of wetland ecosystems. Here, the role of aquatic macrophytes in metal dynamics in wetland sediments is presented. The mechanisms of tolerance to metals in aquatic plants, including metal immobilization, chelation, translocation, and metabolic adaptations, are reviewed based on selected examples from the recent literature. The role of both photosynthetic activity and competitive/synergistic effects of the elements available to aquatic macrophytes in the circulation and deposition of metals are discussed in terms of the functioning of wetland ecosystems and phytoremediation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Al-Hamdani SH, Blair SL (2004) Influence of copper on selected physiological responses in Salvinia minima and its potential use in copper remediation. Am Fern J 94:47–56

    Google Scholar 

  • Appenroth KJ, Krech K, Keresztes Á, Fischer W, Koloczek H (2010) Effects of nickel on the chloroplasts of the duckweeds Spirodela polyrhiza and Lemna minor and their possible use in biomonitoring and phytoremediation. Chemosphere 78:216–223

    PubMed  CAS  Google Scholar 

  • Appenroth KJ, Stöckel J, Srivastava A, Strasser RJ (2001) Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. Environ Pollut 115:49–64

    PubMed  CAS  Google Scholar 

  • Aravind P, Prasad MNV (2003) Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L.: a free floating freshwater macrophyte. Plant Physiol Biochem 41:391–397

    CAS  Google Scholar 

  • Aravind P, Prasad MNV (2004) Zinc protects chloroplasts and associated photochemical functions in cadmium exposed Ceratophyllum demersum L., a freshwater macrophyte. Plant Sci 166:1321–1327

    CAS  Google Scholar 

  • Aravind P, Prasad MNV (2005a) Cadmium–zinc interactions in a hydroponic system using Ceratophyllum demersum L.: adaptive ecophysiology, biochemistry and molecular toxicology. Braz J Plant Physiol 17:3–20

    CAS  Google Scholar 

  • Aravind P, Prasad MNV (2005b) Zinc mediated protection to the conformation of carbonic anhydrase in cadmium exposed Ceratophyllum demersum L. Plant Sci 169:245–254

    CAS  Google Scholar 

  • Aravind P, Prasad MNV (2005c) Modulation of cadmium-induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate–glutathione cycle and glutathione metabolism. Plant Physiol Biochem 43:107–116

    PubMed  CAS  Google Scholar 

  • Aravind P, Prasad MNV (2005d) Cadmium-induced toxicity reversal by zinc in Ceratophyllum demersum L. (a free floating aquatic macrophyte) together with exogenous supplements of amino- and organic acids. Chemosphere 61:1720–1733

    PubMed  CAS  Google Scholar 

  • Aravind P, Prasad MNV, Malec P, Waloszek A, Strzałka K (2009) Zinc protects Ceratophyllum demersum L. (free-floating hydrophyte) against reactive oxygen species induced by cadmium. J Trace Elem Med Biol 23:50–60

    PubMed  CAS  Google Scholar 

  • Armstrong W (1979) Aeration in higher plants. Adv Bot Res 7:226–332

    Google Scholar 

  • Augustynowicz J, Grosicki M, Hanus-Fajerska E, Lekka M, Waloszek A, Kołoczek H (2010) Chromium(VI) bioremediation by aquatic macrophyte Callitriche cophocarpa Sendtn. Chemosphere 79:1077–1083

    PubMed  CAS  Google Scholar 

  • Ayeni OO, Ndakidemi PA, Snyman RG, Odendaal JP (2010) Chemical, biological and physiological indicators of metal pollution in wetlands. Sci Res Essays 5:1938–1949

    Google Scholar 

  • Basiouny FM, Haller WT, Garrard LA (1977) Evidence for root Fe nutrition in Hydrilla verticillata Royle. Plant Soil 48:621–627

    CAS  Google Scholar 

  • Berner RA (1984) Sedimentary pyrite formation: an update. Geochim Cosmochim Acta 48:605–615

    CAS  Google Scholar 

  • Bleuel C, Wesenberg D, Sutter K, Miersch J, Braha B, Bärlocher F (2005) The use of the aquatic moss Fontinalis antipyretica L. ex Hedw. as a bioindicator for heavy metals: 3. Cd2+ accumulation capacities and biochemical stress response of two Fontinalis species. Sci Total Environ 345:13–21

    PubMed  CAS  Google Scholar 

  • Blum WEH (2005) Do we need a journal of soils and sediments (Part 2)? J Soils Sediments 5:195–196

    Google Scholar 

  • Bonanno G, Lo Giudice R (2010) Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecol Indicat 10:639–645

    CAS  Google Scholar 

  • Boonyapookana B, Upatham E, Kruatrachue M, Pokethitiyook P, Singhakaew S (2002) Phytoaccumulation and phytotoxicity of cadmium and chromium in duckweed Wolffia globosa. Int J Phytoremediation 4:87–100

    PubMed  CAS  Google Scholar 

  • Boulegue J, Lord CJ, Church TM (1982) Sulfur speciation and associated trace metals (Fe, Cu) in the pore waters of Great Marsh, Delaware. Geochim Cosmochim Acta 46:453–464

    CAS  Google Scholar 

  • Bruns I, Sutter K, Menge S, Neumann D, Krauss GJ (2001) Cadmium lets increase the glutathione pool in bryophytes. J Plant Physiol 158:79–89

    CAS  Google Scholar 

  • Bunluesin S, Pokethitiyook P, Lanza GR, Tyson JF, Kruatrachue M, Xing B, Upatham S (2007) Influences of cadmium and zinc interaction and humic acid on metal accumulation in Ceratophyllum demersum. Water Air Soil Pollut 180:225–235

    CAS  Google Scholar 

  • Butler TW (2006) Geochemical and biological controls on trace metal transport in an acid mine impacted watershed. Environ Geochem Health 28:231–241

    PubMed  CAS  Google Scholar 

  • Chandra P, Kulshreshtha K (2004) Chromium accumulation and toxicity in aquatic vascular plants. Bot Rev 70:313–327

    Google Scholar 

  • Charles AL, Markich SJ, Ralph P (2006) Toxicity of uranium and copper individually, and in combination, to a tropical freshwater macrophyte (Lemna aequinoctialis). Chemosphere 62:1224–1233

    PubMed  CAS  Google Scholar 

  • Choi JH, Park SS, Jaffe PR (2006) The effect of emergent macrophytes on the dynamics of sulfur species and trace metals in wetland sediments. Environ Pollut 140:286–293

    PubMed  CAS  Google Scholar 

  • Chojnacka K, Chojnacki A, Górecka H, Górecki H (2005) Bioavailability of heavy metals from polluted soils to plants. Sci Total Environ 337:175–182

    PubMed  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    PubMed  CAS  Google Scholar 

  • Dacey JW (1980) Internal winds in the water-lilies: adaptation for life in anaerobic sediments. Science 210:1017–1019

    PubMed  CAS  Google Scholar 

  • DalCorso G, Farinati S, Maistri S, Furini A (2008) How plants cope with cadmium: staking all on metabolism and gene expression. J Integr Plant Biol 50:1268–1280

    PubMed  CAS  Google Scholar 

  • Dazy M, Masfaraud JF, Férard JF (2009) Induction of oxidative stress biomarkers associated with heavy metal stress in Fontinalis antipyretica Hedw. Chemosphere 75:297–302

    PubMed  CAS  Google Scholar 

  • Dhir B, Sharmila P, PardhaSaradhi P, Abdul Nasim S (2009) Physiological and antioxidant responses of Salvinia natans exposed to chromium-rich wastewater. Ecotoxicol Environ Saf 72:1790–1797

    PubMed  CAS  Google Scholar 

  • Ding B, Shi G, Xu Y, Hu J, Xu Q (2007) Physiological responses of Alternanthera philoxeroides (Mart.) Griseb leaves to cadmium stress. Environ Pollut 147:800–803

    PubMed  CAS  Google Scholar 

  • Dirilgen N, Inel Y (1994) Effects of zinc and copper on growth and metal accumulation in duckweed, Lemna minor. Bull Environ Contam Toxicol 53:442–449

    PubMed  CAS  Google Scholar 

  • Di Toro DM, Mahony JD, Hansen DJ, Scott KJ, Hicks MB, Mayr SM, Redmond MS (1990) Toxicity of cadmium in sediments: the role of acid volatile sulfide. Environ Toxicol Chem 9:1487–1502

    Google Scholar 

  • Dogan M, Saygideger SD, Colak U (2009) Effect of lead toxicity on aquatic macrophyte Elodea canadensis Michx. Bull Environ Contam Toxicol 83:249–254

    PubMed  CAS  Google Scholar 

  • Du Laing G, Rinklebe J, Vandecasteele B, Tack FMG (2009) Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Sci Total Environ 407:3972–3985

    PubMed  Google Scholar 

  • Elifantz H, Tel-Or E (2002) Heavy metal biosorption by plant biomass of the macrophyte. Water Air Soil Pollut 141:207–218

    CAS  Google Scholar 

  • Emerson S, Jacobs L, Tebo B (1983) The behavior of trace metals in marine anoxic waters: solubilities at the oxygen-hydrogen sulphide interface. In: Wong CS, Boyle E, Bruland KW, Burton JD, Goldberg ED (eds) Trace metals in sea water. Plenum Press, New York, pp 579–608

    Google Scholar 

  • Fritioff A, Greger M (2006) Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans. Chemosphere 63:220–227

    PubMed  CAS  Google Scholar 

  • Fritioff A, Greger M (2007) Fate of cadmium in Elodea canadensis. Chemosphere 67:365–375

    PubMed  CAS  Google Scholar 

  • Gross MG (1978) Effects of waste disposal operations in estuaries and the coastal ocean. Annu Rev Earth Planet Sci 6:127–143

    CAS  Google Scholar 

  • Gutknecht JLM, Goodman RM, Balser TC (2006) Linking soil process and microbial ecology in freshwater wetland ecosystems. Plant Soil 289:17–34

    CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    PubMed  CAS  Google Scholar 

  • Hasan SH, Talat M, Rai S (2007) Sorption of cadmium and zinc from aqueous solutions by water hyacinth (Eichchornia crassipes). Bioresour Technol 98:918–928

    PubMed  CAS  Google Scholar 

  • Hinman ML, Klaine SJ (1992) Uptake and translocation of selected organic pesticides by the rooted aquatic plant Hydrilla verticillata Royle. Environ Sci Technol 26:609–613

    CAS  Google Scholar 

  • Hoffmann T, Kutter C, Santamaria JM (2004) Capacity of Salvinia minima Baker to tolerate and accumulate As and Pb. Eng Life Sci 4:61–65

    CAS  Google Scholar 

  • Howarth RW, Jørgensen BB (1984) Formation of 35 S-labelled elemental sulfur and pyrite in coastal marine sediments (Limfjorden and Kysing Fjord, Denmark) during short-term 35SSO4 reduction measurements. Geochim Cosmochim Acta 48:1807–1818

    CAS  Google Scholar 

  • Huerta-Diaz MA, Tessier A, Carignan R (1998) Geochemistry of trace metals associated with reduced sulfur in freshwater sediments. Appl Geochem 13:213–233

    CAS  Google Scholar 

  • Ince NH, Dirilgen N, Apikyan IG, Tezcanli G, Ustun B (1999) Assessment of toxic interactions of heavy metals in binary mixtures: a statistical approach. Arch Environ Contam Toxicol 36:365–372

    PubMed  CAS  Google Scholar 

  • Jackson LJ (1998) Paradigms of metal accumulation in rooted aquatic vascular plants. Sci Total Environ 219:223–231

    CAS  Google Scholar 

  • Jiang FY, Chen X, Luo AC (2009) Iron plaque formation on wetland plants and its influence on phosphorus, calcium and metal uptake. Aquat Ecol 43:879–890

    CAS  Google Scholar 

  • Joshi MK, Mohanty P (2004) Chlorophyll a fluorescence as a probe of heavy metal ion toxicity in plants. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence, a signature of photosynthesis. Springer, New York

    Google Scholar 

  • Kabata-Pendias A (2001) Trace elements in the soil and plants. CRC Press, Boca Raton

    Google Scholar 

  • Kanoun-Boulé M, Vicente JF, Nabais C, Prasad MNV, Freitas H (2009) Ecophysiological tolerance of duckweeds exposed to copper. Aquat Toxicol 91:1–9

    PubMed  Google Scholar 

  • Knox AS, Paller MH, Nelson EA, Specht WL, Halverson NV, Gladden JB (2006) Metal distribution and stability in constructed wetland sediment. J Environ Qual 35:1948–1959

    PubMed  CAS  Google Scholar 

  • Kosolapov DB, Kuschk P, Vainshtein MB, Vatsourina AV, Wiebner A, Kasterner M, Miler RA (2004) Microbial processes of heavy metal removal from carbon deficient effluents in constructed wetlands. Eng Life Sci 4:403–411

    CAS  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349

    CAS  Google Scholar 

  • Küpper H, Küpper F, Spiller M (1996) Environmental relevance of heavy metal substituted chlorophylls using the example of water plants. J Exp Bot 47:259–266

    Google Scholar 

  • Küpper M, Küpper F, Spiller M (1998) In situ detection of heavy metal substituted chlorophylls in water plants. Photosynth Res 58:123–133

    Google Scholar 

  • Kupper H, Setlik I, Spiller M, Kupper FC, Prasil O (2002) Heavy metal-induced inhibition of photosynthesis: targets of in vivo heavy metal chlorophyll formation. J Phycol 38:429–441

    CAS  Google Scholar 

  • Lage-Pinto F, Oliveira JG, Da Cunha M, Souza CMM, Rezende CE, Azevedo RA, Vitória AP (2008) Chlorophyll a fluorescence and ultrastructural changes in chloroplast of water hyacinth as indicators of environmental stress. Environ Exp Bot 64:307–313

    CAS  Google Scholar 

  • Lefroy RDB, Chaitep W, Blair GJ (1994) Release of sulfur from rice residues under flooded and non-flooded soil conditions. Aust J Agric Res 45:657–667

    CAS  Google Scholar 

  • Lerman A (1978) Chemical exchange across sediment–water interface. Annu Rev Earth Planet Sci 6:281–306

    CAS  Google Scholar 

  • Li M, Zhang LJ, Tao L, Li W (2008) Ecophysiological responses of Jussiaea rapens to cadmium exposure. Aquat Bot 88:347–352

    CAS  Google Scholar 

  • Lithner G, Borg H, Ek J, Fröberg E, Holm H, Johansson AM, Kärrhage P, Rosén G, Söderström M (2000) The turnover of metals in a eutrophic and an oligotrophic lake in Sweden. AMBIO: J Human Environ 29:217–229

    Google Scholar 

  • Lu X, Kruatrachue M, Pokethitiyook P, Homyok K (2004) Removal of cadmium and zinc by water hyacinth Eichhornia crassipes. Sci Asia 30:93–103

    CAS  Google Scholar 

  • Malec P, Maleva M, Prasad MNV, Strzałka K (2009a) Copper toxicity in leaves of Elodea canadensis Michx. Bull Environ Contam Toxicol 82:627–632

    PubMed  CAS  Google Scholar 

  • Malec P, Maleva MG, Prasad MNV, Strzałka K (2009b) Identification and characterization of Cd-induced peptides in Egeria densa (water weed): putative role in Cd detoxification. Aquat Toxicol 95:213–221

    PubMed  CAS  Google Scholar 

  • Malec P, Maleva MG, Prasad MNV, Strzałka K (2010) Responses of Lemna trisulca L. (Duckweed) exposed to low doses of cadmium: thiols, metal binding complexes, and photosynthetic pigments as sensitive biomarkers of ecotoxicity. Protoplasma 240:69–74

    PubMed  CAS  Google Scholar 

  • Malec P, Waloszek A, Prasad MNV, Strzałka K (2008) Zinc reversal of cadmium-induced energy transfer changes in photosystem II of Ceratophyllum demersum L. as observed by whole-leaf 77 K fluorescence. Plant Stress 2:121–126

    Google Scholar 

  • Maleva MG, Nekrasova GF, Malec P, Prasad MNV, Strzałka K (2009) Ecophysiological tolerance of Elodea canadensis to nickel exposure. Chemosphere 77:392–398

    PubMed  CAS  Google Scholar 

  • Mallick N, Rai LC (2002) Physiological responses of non-vascular plants to heavy metals. In: Prasad MNV, Strzalka K (eds) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer, The Netherlands, pp 111–147

    Google Scholar 

  • Mendelssohn IA, Kleiss BA, Wakeley JS (1995) Factors controlling the formation of oxidized root channels a review. Wetlands 15:37–46

    Google Scholar 

  • Miretzky P, Saralegui A, Fernández-Cirelli A (2006) Simultaneous heavy metal removal mechanism by dead macrophytes. Chemosphere 62:247–254

    PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    PubMed  CAS  Google Scholar 

  • Mohan BS, Hosetti BB (1999) Aquatic plants for toxicity assessment. Environ Res 81:259–274

    PubMed  CAS  Google Scholar 

  • Monferrán MV, Agudo JS, Pignata ML, Wunderlin D (2009) Copper-induced response of physiological parameters and antioxidant enzymes in the aquatic macrophyte Potamogeton pusillus. Environ Pollut 157:2570–2576

    PubMed  Google Scholar 

  • Myśliwa-Kurdziel B, Prasad MNV, Strzałka K (2002) Consequences of heavy metal exposure to the processes related to the light phase of photosynthesis. In: Prasad MNV, Strzałka K (eds) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer, The Netherlands, pp 229–255

    Google Scholar 

  • Myśliwa-Kurdziel B, Strzałka K (2002) Influence of metals on the biosynthesis of photosynthetic pigments. In: Prasad MNV, Strzalka K (eds) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer, The Netherlands, pp 201–228

    Google Scholar 

  • Myśliwa-Kurdziel B, Prasad MNV, Strzałka K (2004) Photosynthesis in heavy metal stressed plants. In: Prasad MNV (ed) Heavy metal stress in plants from biomolecules to ecosystems, 2nd edn. Springer, Berlin, pp 462–470, ISBN: 3-540-40131-8

    Google Scholar 

  • Namieśnik J, Rabajczyk A (2010) The speciation and physico-chemical forms of metals in surface waters and sediments. Chem Spec Bioavailab 22(1):1–21

    Google Scholar 

  • Nichols PB, Couch JD, Al-Hamdani SH (2000) Selected physiological responses of Salvinia minima to different chromium concentrations. Aquat Bot 68:313–319

    CAS  Google Scholar 

  • Nixdorf D, Lessman D, Steinberg CEW (2002) The importance of chemical buffering for pelagic and benthic colonization in acidic waters. Water Air Soil Pollut 3:27–46

    Google Scholar 

  • Nyquist J, Greger M (2009) A field study of constructed wetlands for preventing and treating acid mine drainage. Ecol Eng 35:630–642

    Google Scholar 

  • Oren-Benaroya R, Tzin V, Tel-Or E, Zamski E (2004) Lead accumulation in the aquatic fern Azolla filiculoides. Plant Physiol Biochem 42:639–645

    PubMed  Google Scholar 

  • Otsuki A, Wetzel RG (1972) Coprecipitation of phosphate with carbonates in a marl lake. Limnol Oceanogr 17:763–766

    CAS  Google Scholar 

  • Paiva LB, Gonçalves de Oliveira J, Azevedo RA, Ribeiro DR, da Silva MG, Vitória AP (2009) Ecophysiological responses of water hyacinth exposed to Cr3+ and Cr6+. Environ Exp Bot 65:403–409

    CAS  Google Scholar 

  • Peter R, Welsh H, Denny P (1979) Translocation of lead and copper in two submerged aquatic angiosperm species. J Exp Bot 30:339–345

    CAS  Google Scholar 

  • Pich A, Scholz G (1996) Translocation of copper and other micronutrients in tomato plants (Lycopersicon esculentum Mill.): nicotianamine-stimulated copper transport in the xylem. J Exp Bot 47:41–47

    CAS  Google Scholar 

  • Prasad MNV (1995) Cadmium toxicity and tolerance in vascular plants. Environ Exp Bot 35:525–545

    CAS  Google Scholar 

  • Prasad MNV (2003) Phytoremediation of metal-polluted ecosystems: hype for commercialization. Russ J Plant Physiol 50:686–700

    CAS  Google Scholar 

  • Prasad MNV (2004) Phytoremediation of metals and radionuclides in the environment: the case for natural hyperaccumulators, metal transporters soil-amending chelators and transgenic plants. In: Prasad MNV (ed) Heavy metal stress in plants from biomolecules to ecosystems, 2nd edn. Springer, Berlin, pp 345–391, ISBN: 3-540-40131-8

    Google Scholar 

  • Radić S, Babić M, Skobić D, Roje V, Pevalek-Kozlina B (2010) Ecotoxicological effects of aluminum and zinc on growth and antioxidants in Lemna minor L. Ecotoxicol Environ Saf 73:336–342

    PubMed  Google Scholar 

  • Rauser WE (1999) Structure and function of metal chelators produced by plants: the case for organic acids, aminoacids, phytin, and metallothioneins. Cell Biochem Biophys 31:19–48

    PubMed  CAS  Google Scholar 

  • Rinklebe J, Franke Ch, Neue HU (2007) Aggregation of floodplain soils based on classification principles to predict concentrations of nutrients and pollutants. Geoderma 141:210–223

    CAS  Google Scholar 

  • Rout N, Shaw B (1998) Salinity tolerance in aquatic macrophytes: probable role of proline, the enzymes involved in its synthesis and C4 type of metabolism. Plant Sci 136:121–130

    CAS  Google Scholar 

  • Samanta GP (2010) A two-species competitive system under the influence of toxic substances. Appl Math Comput 216:291–299

    Google Scholar 

  • Samardakiewicz S, Strawiński P, Woźny A (1996) The influence of lead on callose formation in roots of Lemna minor L. Biol Plantarum 38:463–467

    CAS  Google Scholar 

  • Samardakiewicz S, Woźny A (2000) The distribution of lead in duckweed (Lemna minor L.) root tip. Plant Soil 226:107–111

    CAS  Google Scholar 

  • Sanità di Toppi L, Vurro E, Rossi L, Marabottini R, Musetti R, Careri M (2007) Different compensatory mechanisms in two metal-accumulating aquatic macrophytes exposed to acute cadmium stress in outdoor artificial lakes. Chemosphere 68:769–780

    PubMed  Google Scholar 

  • Schneider IAH, Rubio J (1999) Sorption of heavy metal ions by the nonliving biomass of freshwater macrophytes. Environ Sci Technol 33:2213–2217

    CAS  Google Scholar 

  • Schor-Fumbarov T, Goldsbrough PB, Adam Z, Tel-Or E (2005) Characterization and expression of a metallothionein gene in the aquatic fern Azolla filiculoides under heavy metal stress. Planta 223:69–76

    PubMed  CAS  Google Scholar 

  • Simpson SL, Apte SC, Batley GE (1998) Effect of short-term resuspension events on trace metal speciation in polluted anoxic sediments. Environ Sci Technol 32:620–625

    CAS  Google Scholar 

  • St-Cyr L, Campbell PGC (1996) Metals (Fe, Mn, Zn) in the root plaque of submerged aquatic plants collected in situ: relations with metal concentrations in the adjacent sediments and in the root tissue. Biogeochemistry 33:45–76

    CAS  Google Scholar 

  • Suñe N, Sánchez G, Caffaratti S, Maine M (2007) Cadmium and chromium removal kinetics from solution by two aquatic macrophytes. Environ Pollut 145:467–473

    PubMed  Google Scholar 

  • Tkalec M, Prebeg T, Roje V, Pevalek-Kozlina B, Ljubešić N (2008) Cadmium-induced responses in duckweed Lemna minor L. Acta Physiol Plantarum 30:881–890

    CAS  Google Scholar 

  • Tremel A, Masson P, Garraud H, Donard OFX, Baize D, Mench M (1997) Thallium in French agrosystems II. Concentration of thallium in field-grown rape and some other plant species. Environ Pollut 97:161–168

    PubMed  CAS  Google Scholar 

  • Upadhyay RK, Panda SK (2010) Zinc reduces copper toxicity induced oxidative stress by promoting antioxidant defense in freshly grown aquatic duckweed Spirodela polyrhiza L. J Hazard Mater 175:1081–1084

    PubMed  CAS  Google Scholar 

  • Urban NR, Brezonik PL, Baker LA, Sherman LA (1994) Sulfate reduction and diffusion in sediments of Little Rock Lake, Wisconsin. Limnol Oceanogr 39:797–815

    CAS  Google Scholar 

  • Vajpayee P, Tripathi RD, Rai UN, Ali MB, Singh SN (2000) Chromium (VI) accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nymphaea alba L. Chemosphere 41:1075–1082

    PubMed  CAS  Google Scholar 

  • Weis JS, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 30:685–700

    PubMed  CAS  Google Scholar 

  • Wierzbicka M, Szarek-Łukaszewska G, Grodzińska K (2004) Highly toxic thallium in plants from the vicinity of Olkusz (Poland). Ecotoxicol Environ Saf 59:84–88

    PubMed  CAS  Google Scholar 

  • Wind T, Conrad R (1995) Sulfur compounds, potential turnover of sulfate and thiosulfate, and numbers of sulfate-reducing bacteria in planted and unplanted paddy soil. FEMS Microbiol Ecol 18:257–266

    CAS  Google Scholar 

  • Wolterbeek HT, van der Meer AJGM (2002) Transport rate of arsenic, cadmium, copper and zinc in Potamogeton pectinatus L.: radiotracer experiments with As-76 Cd-109, Cd- 115, Cu-64 and Zn-65, Zn-69. Sci Total Environ 287:13–30

    PubMed  CAS  Google Scholar 

  • Wurts WA, Durborow RM (1992) Interactions of pH, carbon dioxide, alkalinity and hardness in fish ponds; SRAC Publication No, 464. Southern Regional Aquaculture Center, Princeton

    Google Scholar 

  • Xu QS, Hu JZ, Xie KB, Yang HY, Du KH, Shi GX (2010) Accumulation and acute toxicity of silver in Potamogeton crispus L. J Hazard Mater 173:186–193

    PubMed  CAS  Google Scholar 

  • Xue P, Li G, Liu W, Yan C (2010) Copper uptake and translocation in a submerged aquatic plant Hydrilla verticillata (L.f.) Royle. Chemosphere 81:1098–1103

    PubMed  CAS  Google Scholar 

  • Yan Ch, Li G, Xue P, Wei Q, Li Q (2010) Competitive effect of Cu(II) and Zn(II) on the biosorption of lead(II) by Myriophyllum spicatum. J Hazard Mater 179(1–3):721–728

    PubMed  CAS  Google Scholar 

  • Yang H, Shi G, Wang H, Xu Q (2010) Involvement of polyamines in adaptation of Potamogeton crispus L. to cadmium stress. Aquat Toxicol 100:282–288

    PubMed  Google Scholar 

  • Yang J, Ye Z (2009) Metal accumulation and tolerance in wetland plants. Front Biol China 4:282–288

    Google Scholar 

  • Zhang Z, Rengel Z, Meney K (2010) Cadmium accumulation and translocation in four emergent wetland species. Water Air Soil Pollut 212:239–249

    CAS  Google Scholar 

Download references

Acknowledgments

This paper was prepared in the frames of European Regional Development Fund: the Polish Innovation Economy Operational Program (contract No. POIG.02.01.00-12-167/08, project Małopolska Centre of Biotechnology) and was financially supported by the Statutory Funds of the Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazimierz Strzałka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Malec, P., Mysliwa-Kurdziel, B., Prasad, M.N.V., Waloszek, A., Strzałka, K. (2011). Role of Aquatic Macrophytes in Biogeochemical Cycling of Heavy Metals, Relevance to Soil-Sediment Continuum Detoxification and Ecosystem Health. In: Sherameti, I., Varma, A. (eds) Detoxification of Heavy Metals. Soil Biology, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21408-0_18

Download citation

Publish with us

Policies and ethics