Skip to main content

Cadmium Metal Detoxification and Hyperaccumulators

  • Chapter
  • First Online:
Detoxification of Heavy Metals

Part of the book series: Soil Biology ((SOILBIOL,volume 30))

Abstract

Environmental contamination with cadmium metal has become a worldwide problem. Cd is persistent in nature leading to its uptake and accumulation in plants that interferes with the physiological activities of the plants. Dietary intake of Cd through consumption of plants has long-term detrimental effects on human and animals. Investigations have suggested involvement of oxidative stress, increased plasma membrane permeability, altered enzyme activities, expression of peptides, and several other biochemical responses in plants grown under elevated soil Cd levels. In nature, there are plants that accumulate high amount of Cd in their tissues and are called as metal hyperaccumulators. This bioaccumulation capacity of hyperaccumulator plants is presently being exploited for bioremediation (cleaning of metal-contaminated sites using plants) purposes. Understanding the genetic basis, the physiological pathways for Cd in particular and the adaptive significance of metal hyperaccumulation is important from the viewpoint of agriculture, human health, and restoration of the environment. With the identification of plant genomes and the genes induced under Cd stress that primarily include those encoding for transporter proteins, metal sequestering peptides, and enzymes of sulfur metabolism in plants, the mechanisms underlying Cd uptake, accumulation, transport, chelation, and detoxification in plants are important. This chapter presents an overview of the research information on sources and effects of cadmium metal on plants in particular. The knowledge of metal hyperaccumulation physiology and the molecular and genetic basis of Cd tolerance and detoxification in plants forms a major part of this chapter. The prospects and the future applications of hyperaccumulators in phytoremediation of Cd metal are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal V, Sharma K (2006) Phytotoxic effects of Cu, Zn, Cd and Pb on in vitro regeneration and concomitant protein changes in Holarrhena antidysentrica. Biol Plantarum 50:307–310

    CAS  Google Scholar 

  • Antonovics J, Bradshaw AD, Turner RG (1971) Heavy metal tolerance in plants. Adv Ecol Res 7:1–85

    Google Scholar 

  • Antosiewicz DM, Henning J (2004) Over-expression of LCT1 in tobacco enhances the protective action of calcium against cadmium toxicity. Environ Pollut 129:237–245

    PubMed  CAS  Google Scholar 

  • Bada BS, Raji KA (2010) Phytoremediation potential of kenaf (Hibiscus cannabinus L.) grown in different soil textures and cadmium concentration. Afr J Environ Sci Technol 4:250–255

    CAS  Google Scholar 

  • Baker AJM (1981) Accumulators and excluders – strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements – a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baker AJM, Reeves RD, McGrath SP (1991) In situ decontamination of heavy metal polluted soils using crops of metal accumulating plants – a feasibility study. In: Hinchee RE, Olfenbuttel RF (eds) Bioreclamation. Wiley, New York, pp 539–544

    Google Scholar 

  • Baker AJM, McGrath SP, Sidoli CMD, Reeves RD (1994) The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour Conservat Recycl 11:41–49

    Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biochemical resource for phytoremediation of metal polluted soil. In: Terry N, Baneulos G (eds) Phytoremediation of contaminated soil and water. Lewis Publications, Boca Raton, pp 85–107

    Google Scholar 

  • Bansova V, Horak O (2008) Heavy metal content in Thlaspi caerulescens J. Et C. Presl growing on metalliferous and non metalliferous soils in central Slovakia. Int J Environ Pollut 33:133–145

    Google Scholar 

  • Banuelos GS, Ajwa HA, Mackey B, Akohoue S (1997) Evaluation of different plant species used for phytoremediation of high soil selenium. J Environ Qual 26:639–646

    CAS  Google Scholar 

  • Barcelo J, Poschenreider C (2002) Fast root growth responses, root exudates and internal detoxification as clue to mechanism of aluminium toxicity and resistance. Environ Exp Bot 48:75–92

    CAS  Google Scholar 

  • Basic N, Keller C, Fontanillas P, Vittoz P, Besnard G, Galland N (2005) Cadmium hyperaccumulation and reproductive traits in natural Thlaspi caerulescens population. Plant Biol 8:64–72

    Google Scholar 

  • Becher M, Talke IN, Krall L, Kramer U (2004) Cross species microarray transcript profiling reveals high constitutive expression of metal homeostasis gene in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251–268

    PubMed  CAS  Google Scholar 

  • Bernand WR, Kagi HR (1987) Purification and characterization of a typical cadmium binding peptides from Zea mays. Experimentia 52:309–315

    Google Scholar 

  • Bernard C, Roosens N, Czernic P, Lebrum M, Verbruggen N (2004) A novel CPx-ATPase from the cadmium hyperaccumulator Thlaspi caerulescens. FEBS Lett 569:140–148

    PubMed  CAS  Google Scholar 

  • Berts V, Meerts P (2003) Genetic basis of Cd tolerence and hyperaccumulation in Arabidopsis halleri. Plant Soil 249:9–18

    Google Scholar 

  • Beyersman D, Hartwig A (2008) Carcinogenic metal compounds: recent insight into molecular and cellular mechanism. Arch Toxicol 82:493–512

    Google Scholar 

  • Blaudez D, Botton B, Chalot M (2000) Cadmium uptake and subcellular compartmentalization in ectomycorrhizal fungus Paxillus involvutus. Microbiology 146:1109–1117

    PubMed  CAS  Google Scholar 

  • Bosque MA, Schuhmacher M, Domingo JL, Llobet JM (1990) Concentration of lead and cadmium in edible vegetables from Tarragona province, Spain. Sci Total Environ 95:61–70

    PubMed  CAS  Google Scholar 

  • Boyd RS (2004) Ecology of metal hyperaccumulation. New Phytol 162:563–567

    Google Scholar 

  • Boyd RS, Shaw JJ, Martens SN (1994) Nickel hyperaccumulation defends Streptanthus polygaloids (Brassicaseae) against pathogens. Am J Bot 81:294–300

    CAS  Google Scholar 

  • Brooks RR, Robinson BH (1998) The potential use of hyperaccumulator and other plants for phytomining. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archeology, mineral exploration and phytomining. CAB International, Wallingford, UK, pp 327–356

    Google Scholar 

  • Brown SL, Chaney RL, Angle JS, Baker AJM (1995) Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens and metal tolerant Silene vulgaris grown on sludge-amended soils. Environ Sci Technol 29:1581–1585

    PubMed  CAS  Google Scholar 

  • Buendia-Gongalez L, Orozco-Villafuerte J, Cruz-Sosa F, Barrera-Diaz CE, Vernon-Carter EJ (2010) Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Bioresour Technol 101:5862–5867

    Google Scholar 

  • Cabrera C, Ortege E, Lorenzo ML, Lopez MDC (1998) Cadmium contamination of vegetable crops, farmlands and irrigation waters. Rev Environ Contam Toxicol 154:55–81

    PubMed  CAS  Google Scholar 

  • Casio C (2004) Phytoextraction of heavy metal by hyperaccumulation and non hyperaccumulating plants – comparison of cadmium uptake and storage mechanism in the plants. PhD thesis, ENAC, EPFL, Switzerland, No 2937

    Google Scholar 

  • Chaney RL (1983) Plant uptake of inorganic waste constituents. In: Parr JF, Marsh PB, Kla JS (eds) Land treatment of hazardous waste. Noyes Data Crop, Park Ridge, NJ, pp 50–76

    Google Scholar 

  • Chen J, Zhao J, Goldsbrough PB (1997) Characterization of phytochelatin-synthase from tomato. Physiol Plant 101:165–172

    CAS  Google Scholar 

  • Clemens S (2001) Molecular mechanism of plant metal tolerance and homeostasis. Planta 212:475–486

    PubMed  CAS  Google Scholar 

  • Clemens S, Antonsiewz DM, Ward JM, Schachtman DP, Schroder JJ (1998) The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast. Proc Nat Acad Sci USA 95:12043–12048

    PubMed  CAS  Google Scholar 

  • Clemens S, Kim EJ, Neumann D, Schroeder JI (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J 18:3325–3333

    PubMed  CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their role in heavy metal detoxification. Plant Physiol 123:825–832

    PubMed  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    PubMed  CAS  Google Scholar 

  • Cobbett CS, May MJ, Howden R, Rolls B (1998) The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is deficient in γ-glutamylcysteine synthetase. Plant J 16:73–78

    PubMed  CAS  Google Scholar 

  • Concon JM (1988) Food toxicology: contamination and additives. Marcel Dekker, New York

    Google Scholar 

  • Conklin DS, MacMasters JA, Culbertson MR, Kung C (1992) COT1 genes involved in cobalt accumulation in Saccharomyces cerevisiae. Mol Cell Biol 12:3678–3688

    PubMed  CAS  Google Scholar 

  • Curie C, Panaviene Z, Loulerguech C, Delaporta SL, Briat F, Walker EL (2001) Maize yellow stripe encodes a membrane protein directly involved in Fe (III) uptake. Nature 409:346–349

    PubMed  CAS  Google Scholar 

  • Dan TV, Krishna S, Saxena PK (2000) Metal tolerance of scented germanium (Pelargonium sp. Fresham): effects of cadmium and nickel on chlorophyll fluorescence kinetics. Int J Phytoremediation 2:91–104

    CAS  Google Scholar 

  • Dan TV, Krishna S, Saxena PK (2002) Cadmium and nickel uptake and accumulation in scented geranium (Pelargonium sp. fresham). Water Air Soil Pollut 137:355–364

    CAS  Google Scholar 

  • De Knecht JA, Koevoets PLM, Verkleji JAC, Ernst WHO (1992) Evidence against a role of phytochelatins in naturally selected increased cadmium tolerance in Silene vulgaris (Moench) Garcke. New Phytol 122:681–688

    Google Scholar 

  • De Knecht JA, Van Baren N, Ten Bookum WM, Wong F, Sang HW, Koevoet PLM, Schat H, Verkleij JAC (1995) Synthesis and degradation of phytochelatins in cadmium sensitive and cadmium-tolerant Silene vulgaris. Plant Sci 106:9–18

    Google Scholar 

  • Duskenhov V, Kumar PBA, Motto H, Raskin I (1995) Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29:1239–1245

    Google Scholar 

  • Dzantor EK, Beauchamp RG (2002) Phytoremediation, part I: fundamental basis for the use of plants in remediation of organic and metal concentration. Environ Pract 4:77–487

    Google Scholar 

  • Escarré J, Lefèbvre C, Gruber W, Leblanc M, Lepart J, Rivière Y, Delay B (2000) Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: implications for phytoremediation. New Phytol 145:429–437

    Google Scholar 

  • FAO-WHO (1986) Toxicological evaluation of certain food activities and contaminants, WHO food additives series. World Health Organization, Rome

    Google Scholar 

  • Fodor E, Szabo-Nagy A, Erdei L (1995) The effects of cadmium on the fluidity and H+-ATPase activity of plasma membrane from sunflower and wheat roots. J Plant Physiol 147:87–92

    CAS  Google Scholar 

  • Freeman JL, Pearson MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16:2176–2191

    PubMed  CAS  Google Scholar 

  • Gekeler W, Grill E, Winnacker E-L, Zenk MH (1989) Survey of the plant kingdom for the ability to bind metals through phytochelatins. Z Naturforsch 44:361–369

    CAS  Google Scholar 

  • Goyer RF (1988) Lead. In: Seiler HG, Sigel H (eds) Handbook of toxicity of inorganic compounds. Marcel Dekker, New York

    Google Scholar 

  • Grill E, Winnacker E-L, Zenk MH (1986a) Homo-phytochelatins as heavy metal-binding peptides of homoglutathione containing Fabales. FEBS Lett 205:47–50

    CAS  Google Scholar 

  • Grill E, Winnacker E-L, Zenk MH (1986b) Synthesis of seven homologous phytochelatins in metal-exposed Schizosaccharomyces cerevisiae cells. FEBS Lett 197:115–120

    CAS  Google Scholar 

  • Grill E, Winnacker E-L, Zenk MH (1987) Phytochelatins the metal binding peptides from plants are functionally analogous to metallothioneins. Proc Nat Acad Sci USA 84:439–443

    PubMed  CAS  Google Scholar 

  • Grill E, Loffler S, Winnacker EL, Zenik MH (1989) Phytochelatins, the heavy metal binding peptides of plants are synthesized from glutathione by a specific Y-glutamyl cysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci USA 86:6838–6842

    PubMed  CAS  Google Scholar 

  • Grotz N, Fox T, Cannoly E, Park W, Guerinot ML, Eide D (1988) Identification of a family of zinc transporter from Arabidopsis that respond to zinc deficiency. Proc Nat Acad Sci USA 86:6838–6842

    Google Scholar 

  • Guerinot ML, Eide D (1999) Zeroing in on zinc uptake in yeast and plants. Curr Opin Plant Biol 2:244–249

    PubMed  CAS  Google Scholar 

  • Gupta SS, Nayek S, Saha RN, Satpati S (2008) Assessment of heavy metal accumulation in macrophyte, agriculture soil and crop plants adjacent to discharge zone of sponge iron factory. Environ Geol 55:731–739

    CAS  Google Scholar 

  • Ha SB, Smith AP, Howden R, Dietrich WM, Bugg SO, Connell MJ, Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase gene from Arabidopsis and the yeast, Schizosaccharomyces pombe. Plant Cell 11:1153–1164

    PubMed  CAS  Google Scholar 

  • Haguenoer JM, Furon D (1981) Toxicologie et hygiène Industrielles. Technique et Documentation, Paris

    Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    PubMed  CAS  Google Scholar 

  • Hayashi Y, Nakagawa CW, Mutoh N, Isobe M, Goto T (1991) Two pathways in the biosynthesis of cadystins (γ EC)nG in the cell free system of fission yeast. Biochem Cell Biol 69:115–121

    PubMed  CAS  Google Scholar 

  • Heiss S, Schafer HJ, Haag-Kerwer A, Rausch T (1999) Sulphur assimilation genes of Brassica juncea L.: cadmium differentially affect the expression of a putative low affinity sulphate transporter and isoform of ATP suphurylase and APS reductase. Plant Mol Biol 39:847–857

    PubMed  CAS  Google Scholar 

  • Hirschi KD, Zhen RG, Cunningham KW, Rea PA, Fink GR (1996) CAX1 and H+/Ca2+ antiporter from Arabidopsis. Proc Nat Acad Sci USA 93:8782–8786

    PubMed  CAS  Google Scholar 

  • Hirschi ED, Korenkey VD, Wilganewski NI, Wagner GI (2000) Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol 124:128–133

    Google Scholar 

  • Hongli F, Wei Z (2009) Screening of amaranthus cultivars (Amaranthus mangostanus L.) for cadmium hyperaccumulation. Sci Agric Sin 42:1316–1324

    Google Scholar 

  • Howden R, Goldsborough PB, Anderson CR, Cobbett CS (1995) Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol 107:1059–1066

    PubMed  CAS  Google Scholar 

  • Ingle RA, Mugford ST, Rees JD, Campbell MM, Smith JA (2005) Constitutively high expression of the histidine biosynthetic pathway contributes to nickel tolerance in hyperaccumulator plants. Plant Cell 17:2089–2106

    PubMed  CAS  Google Scholar 

  • Jackson AP, Alloway BJ (1991) The bioavailability of cadmium to lettuce and cabbage in soils previously treated with sewage sludge. Plant Soil 132:179–186

    CAS  Google Scholar 

  • Jean L, De M (1997) Constructed wetlands for sludge dewatering. Water Sci Technol 35:279–285

    Google Scholar 

  • Jiang RF, Ma DY, Zhao FJ, Mcgrath SP (2005) Cadmium hyperaccumulation protects Thlaspi caerulescens from leaf feeding damage by thrips (Frankliniella occidentalis). New Phytol 167:805–814

    PubMed  CAS  Google Scholar 

  • Kamizono A, Nishizawa M, Teranishi Y, Murata K, Kimura A (1989) Identification of a gene conferring resistance to zinc and cadmium in Saccharomyces cerevisiae. Mol Gen Genet 219:161–167

    PubMed  CAS  Google Scholar 

  • Kawashima CG, Noji M, Nakamura M, Ogra Y, Suzuki KT, Saito K (2004) Heavy metal tolerance of transgenic tobacco plants over-expressing cysteine synthase. Biotechnol Lett 26:153–157

    PubMed  CAS  Google Scholar 

  • Kim JB, Kanmg JY, Kim SY (2004) Over expression of a transcription factor regulating ABA-responsive gene expression confers multiple stress tolerance. Plant Biotechnol J 2:459–466

    PubMed  CAS  Google Scholar 

  • Klapheck S, Fleigner W, Zimmer I (1994) Hydroxymethyl phytochelatins [(γ-glutamyl-cystine)n serine] are metal induced peptides of Poaceae. Plant Physiol 104:1325–1332

    PubMed  CAS  Google Scholar 

  • Klapheck S, Schlunz S, Bergmann L (1995) Synthesis of phytochelatins and homo phytochelatins in Pisum sativum. Plant Physiol 107:515–521

    PubMed  CAS  Google Scholar 

  • Klassen CD, Liu J, Choudhuri S (1999) Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu Rev Pharmacol Toxicol 39:267–294

    Google Scholar 

  • Kneer R, Zenk MH (1992) Phytochelatins protect plant enzymes from heavy metal poisoning. Phytochemistry 31:2663–2667

    CAS  Google Scholar 

  • Korshunova YO, Eide D, Clark WG, Guerinot ML, Pakrasi HB (1999) The IRT1 protein from Arabidopsis thaliana, is a metal transporter with a broad substrate range. Plant Mol Biol 40:37–44

    PubMed  CAS  Google Scholar 

  • Kramer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534

    PubMed  Google Scholar 

  • Kubota H, Takenka C (2003) Arabis gemmifera is a hyperaccumulator of Cd and Zn. Int J Phytoremediation 5:197–220

    PubMed  CAS  Google Scholar 

  • Küpper H, Kochian L (2010) Transcriptional regulation of metal transport genes and mineral nutrition during acclimation to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population). New Phytol 185:114–129

    PubMed  Google Scholar 

  • Küpper H, Lombi E, Zhao FJ, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84

    PubMed  Google Scholar 

  • Lee SM, Leustek T (1999) The effect of cadmium on sulphate assimilation enzyme in Brassica juncea. Plant Sci 141:201–207

    CAS  Google Scholar 

  • Lee S, Moon JS, Petros D, Goldsbroug PB, Korban SS (2003) Over-expression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol 131:656–663

    PubMed  CAS  Google Scholar 

  • Li L, Kaplan J (1998) Defect in yeast iron transport system result in increased metal hypersensitivity because of the increased expression of transporter with broad transition metal specificity. J Biol Chem 271:22181–22187

    Google Scholar 

  • Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2001) Phytoremediation of heavy metal – contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction. J Environ Qual 30:1919–1926

    PubMed  CAS  Google Scholar 

  • Lombi E, Tearall KL, Howarth JR, Zhao FJ, Hawkesford MJ, McGrath SP (2002) Influence of iron status on Cadmium and Zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 128:1359–1367

    PubMed  CAS  Google Scholar 

  • Lopez-Millan AF, Ellis DR, Grusak MA (2004) Identification and characterization of several new members of the ZIP family of metal ion transporters in Medicago truncatula. Plant Mol Biol 54:583–596

    PubMed  CAS  Google Scholar 

  • Lu LL, SK Tian, Yang XE, Wang XC, Brown P, Li TQ, He ZL (2008) Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii. J Exp Bot 59:3203–3213

    PubMed  CAS  Google Scholar 

  • Maitani T, Kubota H, Sato K, Yamada T (1999) Phytochelatins (class III metallothioneins) and their desglycyl peptides induced by cadmium in root culture of Rubia tinctorum L. In: Klassen C (ed) Metallothionein, vol IV. Birkhauser Verlag, Basel, pp 201–205

    Google Scholar 

  • Manousaki E, Kadukova J, Papadantonakis N, Kalogerakis N (2008) Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saline and saline soils. Environ Res 106:326–332

    PubMed  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition in higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Martin MH, Coughtrey PJ (1982) Biological monitoring of heavy metal pollution. Applied Science Publishers, New York

    Google Scholar 

  • McIntyre T (2003) Phytoremediation of heavy metal from soil. In: Schepet T (ed) Advances in biochemical engineering/biotechnology, vol 78. Springer, Heidelberg

    Google Scholar 

  • McLaughlin MJ, Tiller KG, Naidu R, Stevens DP (1996) Review: the behaviour and environmental impact of contaminants in fertilizers. Aust J Soil Res 34:1–54

    CAS  Google Scholar 

  • McNair MR (1993) The genetics of metal tolerance in vascular plants. New Phytol 124:541–559

    Google Scholar 

  • Mehra RK, Winge DR (1988) Cu (I) binding to Schizosaccaromyces pombe γ-glutamyl transferase peptides varying in chain lengths. Arch Biochem Biophys 265:381–389

    PubMed  CAS  Google Scholar 

  • Meuwly P, Thibault P, Schwan AL, Rauser WE (1995) Three families of thiol peptides are induced by cadmium in maize. Plant J 7:391–400

    PubMed  CAS  Google Scholar 

  • Molitor M, Dechamps C, Gruber W, Meerts P (2005) Thlaspi caerulescens on nonmetalliferous soil in Luxembourg: ecological niche and genetic variation in mineral element composition. New Phytol 165:503–512

    PubMed  Google Scholar 

  • Moons A (2003) Ospdr 9, which encodes a PDR-type ABC transporter, is induced by heavy metals, hypoxic stress and redox perturbation in rice roots. FEBS Lett 553:370–376

    PubMed  CAS  Google Scholar 

  • Moral R, Gomez I, Navarro-Pedreno J, Mataix J (1994) Effect of Cd on nutrient distribution, yield and growth of tomato grown soilless culture. J Plant Nutr 17:953–962

    CAS  Google Scholar 

  • Moreno-Caselles J, Moral R, Pere-Espinosa A, Marcia MD (2000) Cadmium accumulation and distribution in cucumber plants. J Plant Nutr 23:243–250

    CAS  Google Scholar 

  • Nahakpam S, Shah K (2011) Expression of key antioxidant enzymes under combined effect of heat and cadmium toxicity in growing rice seedlings. Plant Growth Regul 63(1):23–35

    CAS  Google Scholar 

  • Nedjimi B, Daoud Y (2009) Cadmium accumulation in Atriplex halimus subsp. schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora Morphol Distrib Funct Ecol Plants 204:316–324

    Google Scholar 

  • Noctor G, Arisi A, Jouanin L, Kunert K, Renenberg H, Foyer C (1998) Glutathione biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Bot 49:623–647

    CAS  Google Scholar 

  • Odjegba VJ, Fasidi IO (2004) Accumulation of trace elements by Pistia stratiotes: implications for phytoremediation. Ecotoxicology 13:637–646

    PubMed  CAS  Google Scholar 

  • Olmos E, Solano MJR, Piqueras A (2003) Early steps in the oxidative burst induced by cadmium in cultured tobacco cells (BY-2 line) [J]. J Exp Bot 54:291–301

    PubMed  CAS  Google Scholar 

  • Ortiz DF, Ruscitti T, McCuc KF, Ow DW (1995) Transport of metal binding peptides by HMT1, a fission yeast ABC-type B vacuolar membrane protein. J Biol Chem 270:4721–4728

    PubMed  CAS  Google Scholar 

  • Ouariti O, Boussama N, Zarrouk M, Cherif A, Ghorbal MH (1997) Cadmium- and copper-induced changes in tomato membrane lipids. Phytochemistry 45:1343–1350

    PubMed  CAS  Google Scholar 

  • Padmavathiamma PK, Loretta YL (2007) Phytoremediation technology: hyper-accumulation of metals in plants. Water Air Soil Pollut 184:105–126

    CAS  Google Scholar 

  • Paulsen IT, Saier MH (1997) A novel family of ubiquitous heavy metal ion transport proteins. J Membr Biol 156:99–103

    PubMed  CAS  Google Scholar 

  • Pence NS, Larsen PB, Ebbs SD, Letham DLD, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular physiology of heavy metal transport in Zinc/Cadmium hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci USA 97:4956–4960

    PubMed  CAS  Google Scholar 

  • Pilon Smits E, Hwang S, Lytle M, Zhu Y, Tai JC, Bravo RC, Chen Y, Leustek T, Terry N (1999) Over-expression of ATP sulfurylase in Brassica juncea leads to increased selenate uptake, reduction and tolerance. Plant Physiol 119:123–132

    PubMed  CAS  Google Scholar 

  • Pollard AJ (2000) Metal hyperaccumulation. New Phytol 146:179–181

    Google Scholar 

  • Pollard A, Powell K, Harper F, Smith J (2002) The genetic basis of metal hyperaccumulation in plants. Crit Rev Plant Sci 21:539–566

    CAS  Google Scholar 

  • Prasad MNV (1995) Cadmium toxicity and tolerance in vascular plants. Environ Exp Bot 35:525–540

    CAS  Google Scholar 

  • Rauser WE (1990) Phytochelatins. Annu Rev Biochem 59:61–86

    PubMed  CAS  Google Scholar 

  • Rauser WE (1995) Phytochelatins and related peptides. Plant Physiol 109:1141–1149

    PubMed  CAS  Google Scholar 

  • Rea PA, Li ZS, Lu YP, Drosdowicz YM, Martinoia E (1998) From vacuolar GS-X pumps to multi-specific transporters. Annu Rev Plant Physiol Plant Mol Biol 49:727–760

    PubMed  CAS  Google Scholar 

  • Reeves RD, Brooks RR (1983) Hyperaccumulation of lead and zinc by two metallophytes from mining areas of Central Europe. Environ Pollut Ser A 31:277–285

    CAS  Google Scholar 

  • Reilly C (1980) Metal contamination of food. Applied Science, London

    Google Scholar 

  • Robards K, Worsfold P (1991) Cadmium: toxicology and analysis. A review. Analyst 116:549–568

    PubMed  CAS  Google Scholar 

  • Robinson NJ, Tommey AM, Kuske C, Jackson PJ (1993) Plant metallothioneins. Biochem J 295:1–10

    PubMed  CAS  Google Scholar 

  • Roelofs D, Marien J, Van Straalen NM (2007) Differential gene expression profiles associated with heavy metal tolerance in the soil insect Orchesella cincta. Insect Biochem Mol Biol 37:287–295

    PubMed  CAS  Google Scholar 

  • Roelofs D, Aarts MGM, Schat H, Van Straalen NM (2008) Functional ecological genomics to demonstrate general and specific responses to abiotic stress. Funct Ecol 22:8–18

    Google Scholar 

  • Roosen N, Verbruggen N, Meerts P, Ximenez-Embun P, Smith JAC (2003) Natural variation in Cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from western Europe. Plant Cell Environ 26:1657–1672

    Google Scholar 

  • Salt DE, Rauser WE (1995) Mg-ATP dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107:1293–1301

    PubMed  CAS  Google Scholar 

  • Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1427–1433

    PubMed  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–648

    PubMed  CAS  Google Scholar 

  • Saraswat S, Rai JPN (2009) Phytoextraction potential of six plant species grown in multimetal contaminated soil. Chem Ecol 25:1–11

    CAS  Google Scholar 

  • Sarma H (2011) Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J Environ Sci Technol 4:118–138

    CAS  Google Scholar 

  • Schat H, Llugany M, Voojis R, Harley-Whitaker J, Bleeker PM (2002) The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. J Exp Bot 53:2381–2392

    PubMed  CAS  Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant response to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    PubMed  CAS  Google Scholar 

  • Schwarz Y (1974) Trace element metabolism in animals. University Park Press, Baltimore

    Google Scholar 

  • Seiler H, Sigel H (1988) Handbook on toxicity of inorganic compounds. Dekker, New York

    Google Scholar 

  • Selvam A, Wong JW (2008) Phytochelatin synthesis and cadmium uptake of Brassica napus. Environ Technol 29:65–773

    Google Scholar 

  • Senden MHMN, Van Paassen FJM, Van Der Meer AJGM, Wolterbeek HTh (1990) Cadmium- citric acid-xylem cell wall interactions in tomato plants. Plant Cell Environ 15:71–79

    Google Scholar 

  • Shah K, Dubey RS (1995) Effect of cadmium on RNA level as well as activity and molecular forms of ribonuclease in growing rice seedlings. Plant Physiol Biochem 33:577–584

    CAS  Google Scholar 

  • Shah K, Dubey RS (1998) A 18 kDa cadmium inducible protein complex: its isolation and characterization from rice (Oryza sativa L.) seedlings. J Plant Physiol 152:448–454

    CAS  Google Scholar 

  • Shah K, Nahakpam S (2011a) Expression of key antioxidant enzymes under combined effect of heat and cadmium toxicity in growing rice seedlings. Plant Growth Regul 63:23–35

    Google Scholar 

  • Shah K, Nahakpam S (2011b) Heat stress and Cadmium toxicity in higher plants-an overview. In: Hemantranjan A (ed) Advances in plant physiology, vol 12. Scientific Publishers (India), Jodhpur, pp 441–453

    Google Scholar 

  • Shah K, Nongkynrih JM (2007) Metal hyperaccumulators and bioremediation. Biol Plantarum 51:618–634

    CAS  Google Scholar 

  • Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of Cadmium on lipid peroxidation, superoxide anion and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161:1135–1144

    CAS  Google Scholar 

  • Shah K, Penel C, Gagnon X, Dunand C (2004) Purification and identification of a Ca2+-pectate peroxidase from Arabidopsis leaves. Phytochemistry 65:307–312

    PubMed  CAS  Google Scholar 

  • Shah K, Raghuvanshi R, Singh I (2011). Phosphate Transporters in Symbiotic Arbuscular Endomycorrhizal Association: A Bioinformatics Approach. In: Sinha RP, Sharma NK and Rai AK, (eds) Advances in life sciences, IK International Publishers (India), New Delhi, pp 93–115

    Google Scholar 

  • Sharma RK, Agrawal M (2005) Biological effects of heavy metals – an overview. J Environ Biol 26(2l):301–313

    PubMed  CAS  Google Scholar 

  • Shaw BP, Sahu SK, Mishra RK (2004) Heavy metal induced oxidative damage in terrestrial plants. In: Prasad MNV (ed) Heavy metal stress in plants. Springer, Heidelberg, pp 84–126

    Google Scholar 

  • Siedlecka A, Baszynski T (1993) Inhibition of electron flow around photosystem I in chloroplasts of Cd-treated maize plants is due to Cd-induced iron deficiency. Physiol Plant 87:199–202

    CAS  Google Scholar 

  • Singh OV, Jain RK (2003) Phytoremediation of toxic aromatic pollutants from soil. Appl Microbiol Biotechnol 63:128–135

    PubMed  CAS  Google Scholar 

  • Sivaci A, Elmas E, Gumu F, Sivaci ER (2008) Removal of Cadmium by Myriophyllum heterophyllum michx and Potamogeton crispus L. and its effect on pigments and total phenolic compounds. Arch Environ Contam Toxicol 54:612–618

    PubMed  CAS  Google Scholar 

  • Song W-Y, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21:914–919

    PubMed  CAS  Google Scholar 

  • Sun R, Zhou Q, Wei S (2000) Cadmium accumulation in relation to organic acids and non- protein thiols in leaves of the recently found Cd-hyperaccumulator Rorippa globosa and the Cd-accumulating plant Rorippa islandica. J Plant Growth Regul 30(1):83–91

    Google Scholar 

  • Tahvonen R (1996) Contents of Lead and Cadmium in foods and diets. Food Rev Int 12:1–70

    CAS  Google Scholar 

  • Tam PCF (1995) Heavy metal tolerance by ectomycorrhizal fungi and metal amelioration by Pisolothus tinctorius. Mycorrhiza 5:181–187

    CAS  Google Scholar 

  • Tang YT, Qiu RL, Zeng XW, Ying RR, Yu FM, Zhou XY (2009) Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch. Environ Exp Bot 66:126–134

    CAS  Google Scholar 

  • Tommasini R, Vogt E, Fromenteau M, Hortensteiner S, Matile P, Amrhein N, Martinoia E (1998) An ABC transporter of Arabidopsis thaliana has both glutathione conjugate and chlorophyll catabolite transport activity. Plant J 13:773–780

    PubMed  CAS  Google Scholar 

  • Tong YP, Kneer R, Zhu YG (2004) Vacuolar compartmentalization: a second-generation approach to engineering plants for phytoremediation. Trends Plant Sci 9:7–9

    PubMed  CAS  Google Scholar 

  • Toppi di Sanita L, Gabbrielli R (1999) Response to Cadmium in higher plants. Environ Exp Bot 41:105–130

    Google Scholar 

  • USEPA (2000) Introduction to phytoremediation. United States Environmental Protection Agency, Washington DC, USA

    Google Scholar 

  • Van DWM (1991) Coomon reed. In: Rozema J, Verkleij JAC (eds) Ecological responses to environmental stress. Kluwer Academic, The Netherlands, pp 172–182

    Google Scholar 

  • Van der Zaal BJ, Neutboom LW, Pinars JE, Chardonnens AN, Schat H, Verkleji JA, Hooykaas PJ (1999) Over-expression of a novel Arabidopsis gene related to putative Zinc transport genes from animals can lead to enhanced Zinc resistance and accumulation. Plant Physiol 119:1047–1056

    PubMed  Google Scholar 

  • Van Huysen T, Terry N, Pilon-Smits EAH (2004) Exploring the selenium phytoremediation potential of transgenic Indian mustard over-expressing ATP sulfurylase or cystathionine-γ-synthase. Int J Phytoremediation 6:111–118

    PubMed  Google Scholar 

  • Vatanamuik OK, Mari S, Lu YP, Rea PA (1999) A phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proc Natl Acad Sci USA 96:7110–7115

    Google Scholar 

  • Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot ML, Briata JF, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil for plant growth. Plant Cell 14:1223–1233

    PubMed  CAS  Google Scholar 

  • Vogel-Mikus K, Pongrac P, Kump P, Necemer M, Regvar M (2006) Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Environ Pollut 139:362–371

    PubMed  CAS  Google Scholar 

  • Vogel-Mikus K, Arcon I, Kodre A (2010) Complexation of cadmium in seeds and vegetative tissues of the cadmium hyperaccumulator Thlaspi praecox as studied by X-ray absorption spectroscopy. Plant Soil 331:439–451

    CAS  Google Scholar 

  • Wagner GJ (1993) Accumulation of cadmium in crop plants and its consequences to human health. Adv Agron 51:173–212

    CAS  Google Scholar 

  • Wang QR, Cui YS, Liu XM, Dong YT, Christie P (2003) Soil contamination and uptake of heavy metals at polluted sites in China. J Environ Sci Health 38:823–838

    Google Scholar 

  • Weber M, Harada E, Vess C, Roepenack-Lahaye EV, Clemens S (2004) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotinamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factor. Plant J 37:269–281

    PubMed  CAS  Google Scholar 

  • Welch RM, Norvell WA (1999) Mechanisms of Cadmium uptake, translocation and deposition in plants. In: McLaughlin MJ, Singh BR (eds) Cadmium in soils and plants. Kluwer Academic, Dordrecht, pp 125–150

    Google Scholar 

  • Wojcik M, Tukiendorf A (2005) Cadmium uptake, localization and detoxification in Zea mays. Biol Plantarum 49:237–245

    CAS  Google Scholar 

  • Xiang C, Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10:1539–1550

    PubMed  CAS  Google Scholar 

  • Xiong YH, Yang XE, Ye ZQ, He ZL (2004) Characteristics of cadmium uptake and accumulation by two contrasting ecotypes of Sedum alfredii Hance. J Environ Sci Health A Tox Hazard Subst Environ Eng 39:2925–2940

    PubMed  CAS  Google Scholar 

  • Xue Q, Harrison HC (1991) Effect of soil Zinc, pH and cultivar on Cadmium uptake in leaf lettuce (Lactuca sativa L. var. crispa). Commun Soil Sci Plant Anal 22:975–991

    CAS  Google Scholar 

  • Yang XE, Long XX, Ye HB (2004) Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance) [J]. Plant Soil 259:181–189

    CAS  Google Scholar 

  • Yannai S, Berdicevsky I (1995) Formation of organic cadmium by microorganisms. Eco-toxicol Environ Saf 32:209–214

    CAS  Google Scholar 

  • Yeh CM, Hsiao LJ, Huang HJ (2004) Cadmium activates a mitogen-activated protein kinase gene and MBP kinase in rice [J]. Plant Cell Physiol 45:1306–1312

    PubMed  CAS  Google Scholar 

  • Yong LZ, Pilon-Smits EAH, Tarun AS, Weber SU, Jouanin L, Terry N (1999) Cadmium tolerance and accumulation in Indian mustard is enhanced by over-expressing γ glutamyl cysteine synthetase. Plant Physiol 121:1169–1177

    Google Scholar 

  • Zeng X, Ma LQ, Qiu R, Tang Y (2009) Responses of nonprotein thiols to Cd exposure in Cd hyperaccumulator Arabis paniculata Franch. Environ Exp Bot 66:242–248

    Google Scholar 

  • Zha HG, Jiang RF, Zhao FJ, Vooijs R, Schat H, Barker JHA, McGrath SP (2004) Co-segregation analysis of Cadmium and Zinc accumulation in Thlaspi caerulescens interecotypic crosses. New Phytol 163:299–312

    CAS  Google Scholar 

  • Zhang Z, Qiu B (2007) Reactive oxygen species metabolism during the cadmium hyperaccumulation of a new hyperaccumulator Sedum alfredii (Crassulaceae). J Environ Sci 19:1311–1317

    CAS  Google Scholar 

  • Zhang CZ, Chen BX, Qiu BS (2010) Phytochelatin synthesis plays a similar role in shoots of the cadmium hyperaccumulator Sedum alfredii as in non-resistant plants. Plant Cell Environ 33:1248–1255

    PubMed  CAS  Google Scholar 

  • Zhao S-J, Zhang Z-C, Gao X, Tohsun G, Qiu BS (2009) Plant regeneration of the mining ecotype Sedum alfredii and cadmium hyperaccumulation in regenerated plants. Plant Cell Tissue Organ Cult 99:9–16

    CAS  Google Scholar 

  • Zhou WB, Qiu BS (2005) Effects of cadmium hyperaccumulation on physiological characteristics of Sedum alfredii Hance (Crassulaceae). Plant Sci 169:737–745

    CAS  Google Scholar 

  • Zhu Y (2010) Phytoremediation of Cadmium polluted soil by Brassica chinensis. Guangdong Agric Sci DOI:CNKI:SUN:GDNY.0.2010-02-024

    Google Scholar 

  • Zhu YL, Pilon-Smits EAH, Jouanin L, Terry N (1999) Over-expression of glutathione synthases in Indian Mustard enhances cadmium accumulation and tolerances. Plant Physiol 119:73–79

    CAS  Google Scholar 

Download references

Acknowledgments

I wish to acknowledge the contributions of the members of Environmental Science, Biochemical and Bioinformatics Laboratory, IESD, Banaras Hindu University, and valuable collaboration with colleagues. The work of my laboratory is supported by the Department of Science and Technology, Government of India, New Delhi. My apologies to all those researchers whose work could not be included in this chapter due to space limitation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavita Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shah, K. (2011). Cadmium Metal Detoxification and Hyperaccumulators. In: Sherameti, I., Varma, A. (eds) Detoxification of Heavy Metals. Soil Biology, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21408-0_10

Download citation

Publish with us

Policies and ethics