Skip to main content

Interactions of Trypanosoma cruzi and Triatomines

  • Chapter
  • First Online:
Progress in Parasitology

Part of the book series: Parasitology Research Monographs ((Parasitology Res. Monogr.,volume 2))

Abstract

Triatomine bugs are vectors of Trypanosoma cruzi, the etiologic agent of Chagas disease in Latin America. The flagellate colonizes the intestinal tract of the insect, especially the rectum. T. cruzi changes the composition of amino acids and proteins/peptides in the rectum and affects the intestinal innate immune homeostasis. Since it induces only adverse effects on larval developmental times and mortality rates if starvation as a second stressor is present, the flagellate is classified as “subpathogenic” for the vector. Effects of the vector on the flagellate are obvious in the differing competence for different strains of T. cruzi. In addition, the development of the flagellate is affected by different nutritional stages of the vector, i.e. starvation and feeding induce changes in the population density and the percentages of the different developmental stages, especially of spheromastigotes and giant cells which usually occur rarely. Compounds in the urine which is secreted rapidly after feeding induce the development of metacyclic trypomastigotes, the human-infectious stage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad-Franch F, Monteiro FA (2005) Molecular research and the control of Chagas disease vectors. An Acad Bras Cienc 77:437–454

    PubMed  CAS  Google Scholar 

  • Acosta-Serrano A, Almeida IC, Freitas-Junior LH, Yoshida N, Schenkman S (2001) The mucin-like glycoprotein super-family of Trypanosoma cruzi: structure and biological roles. Mol Biochem Parasitol 114:143–150

    PubMed  CAS  Google Scholar 

  • Alves CR, Albuquerque-Cunha JM, Mello CB, Garcia ES, Nogueira NF, Bourguingnon SC, de Souza W, Azambuja P, Gonzalez MS (2007) Trypanosoma cruzi attachment to perimicrovillar membrane glycoproteins of Rhodnius prolixus. Exp Parasitol 116:44–52

    PubMed  CAS  Google Scholar 

  • Amino R, Serrano AA, Morita OM, Pereira-Chioccola VL, Schenkman S (1995) A sialidase activity in the midgut of the insect Triatoma infestans is responsible for the low levels of sialic acid in Trypanosoma cruzi growing in the insect vector. Glycobiology 5:625–631

    PubMed  CAS  Google Scholar 

  • Amino R, Porto RM, Chammas R, Egami MI, Schenkman S (1998) Identification and characterization of a sialidase released by the salivary gland of the hematophagous insect Triatoma infestans. J Biol Chem 273:24575–24582

    PubMed  CAS  Google Scholar 

  • Amino R, Tanaka AS, Schenkman S (2001) Triapsin, an unusual activatable serine protease from the saliva of the hematophagous vector of Chagas’ disease Triatoma infestans (Hemiptera: Reduviidae). Insect Biochem Mol Biol 31:465–472

    PubMed  CAS  Google Scholar 

  • Amino R, Martins RM, Procopio J, Hirata IY, Juliano MA, Schenkman S (2002) Trialysin, a novel pore-forming protein from saliva of hematophagous insects activated by limited proteolysis. J Biol Chem 277:6207–6213

    PubMed  CAS  Google Scholar 

  • Anonymous (1999) Recommendations from a satellite meeting. Mem Inst Oswaldo Cruz 94:429–432

    Google Scholar 

  • Araújo CAC, Waniek PJ, Stock P, Mayer C, Jansen AM, Schaub GA (2006) Sequence characterization and expression patterns of defensin and lysozyme encoding genes from the gut of the reduviid bug Triatoma brasiliensis. Insect Biochem Mol Biol 36:547–560

    PubMed  Google Scholar 

  • Araújo CAC, Cabello PH, Jansen AM (2007) Growth behaviour of two Trypanosoma cruzi strains in single and mixed infections: In vitro and in the intestinal tract of the blood-sucking bug, Triatoma brasiliensis. Acta Trop 101:225–231

    PubMed  Google Scholar 

  • Araújo CAC, Waniek PJ, Jansen AM (2008) Development of a Trypanosoma cruzi (TcI) isolate in the digestive tract of an unfamiliar vector, Triatoma brasiliensis (Hemiptera, Reduviidae). Acta Trop 107:195–199

    PubMed  Google Scholar 

  • Asin S, Catalá S (1995) Development of Trypanosoma cruzi in Triatoma infestans: influence of temperature and blood consumption. J Parasitol 81:1–7

    PubMed  CAS  Google Scholar 

  • Assumpção TCF, Francischetti IMB, Andersen JF, Schwarz A, Santana JM, Ribeiro JMC (2008) An insight into the sialome of the blood-sucking bug Triatoma infestans, a vector of Chagas’ disease. Insect Biochem Mol Biol 38:213–232

    PubMed  Google Scholar 

  • Ávila AR, Dallagiovanna B, Yamada-Ogatta SF, Monteiro-Góes V, Fragoso SP, Krieger MA, Goldenberg S (2003) Stage-specific gene expression during Trypanosoma cruzi metacyclogenesis. Genet Mol Res 2:159–168

    PubMed  Google Scholar 

  • Azambuja P, Mello CB, D’Escoffier LN, Garcia ES (1989) In vitro cytotoxicity of Rhodnius prolixus hemolytic factor and mellitin towards different trypanosomatids. Braz J Med Biol Res 22:597–599

    PubMed  CAS  Google Scholar 

  • Azambuja P, Feder D, Garcia ES (2004) Isolation of Serratia marcescens in the midgut of Rhodnius prolixus: impact on the establishment of the parasite, Trypanosoma cruzi, in the vector. Exp Parasitol 107:89–96

    PubMed  CAS  Google Scholar 

  • Azambuja P, Garcia ES, Ratcliffe NA (2005) Gut microbiota and parasite transmission by insect vectors. Trends Parasitol 21:568–572

    PubMed  Google Scholar 

  • Barros VC, Assumpção JG, Cadete AM, Santos VC, Cavalcante RR, Araújo RN, Pereira MH, Gontijo NF (2009) The role of salivary and intestinal complement system inhibitors in the midgut protection of triatomines and mosquitoes. PLoS One 4(6):e6047. doi:10.1371/journal.pone.0006047

    PubMed  Google Scholar 

  • Beard CB, Cordon-Rosales C, Durvasula RV (2002) Bacterial symbionts of the Triatominae and their potential use in control of Chagas disease transmission. Annu Rev Entomol 47:123–141

    PubMed  CAS  Google Scholar 

  • Belaunzarán ML, Lammel EM, Giménez G, Wainszelbaum MJ, de Isola ELD (2009) Involvement of protein kinase C isoenzymes in Trypanosoma cruzi metacyclogenesis induced by oleic acid. Parasitol Res 105:45–55

    Google Scholar 

  • Billingsley PF, Downe AER (1986) The surface morphology of the midgut cells of Rhodnius prolixus Stål (Hemiptera: Reduviidae) during blood digestion. Acta Trop 43:355–366

    PubMed  CAS  Google Scholar 

  • Borges EC, Machado EMM, Garcia ES, Azambuja P (2006) Trypanosoma cruzi: effects of infection on cathepsin D activity in the midgut of Rhodnius prolixus. Exp Parasitol 112:130–133

    PubMed  CAS  Google Scholar 

  • Brener Z (1972) A new aspect of Trypanosoma cruzi life-cycle in the invertebrate host. J Protozool 19:23–27

    PubMed  CAS  Google Scholar 

  • Brener Z, Alvarenga NJ (1976) Life cycle of T. cruzi in the vector. In: Pan American Health Organization (ed) New approaches in American trypanosomiasis research, Sci. Publ. No. 318. Pan American Health Organization, Washington, DC, pp 83–88

    Google Scholar 

  • Canavoso LE, Frede S, Rubiolo ER (2004) Metabolic pathways for dietary lipids in the midgut of hematophagous Panstrongylus megistus (Hemiptera: Reduviidae). Insect Biochem Mol Biol 34:845–854

    PubMed  CAS  Google Scholar 

  • Carvalho-Moreira CJ, Spata MC, Coura JR, Garcia ES, Azambuja P, Gonzalez MS, Mello CB (2003) In vivo and in vitro metacyclogenesis tests of two strains of Trypanosoma cruzi in the triatomine vectors Triatoma pseudomaculata and Rhodnius neglectus: short/long-term and comparative study. Exp Parasitol 103:102–111

    PubMed  CAS  Google Scholar 

  • Castro DP, Moraes CS, Garcia ES, Azambuja P (2007a) Inhibitory effects of D-mannose on trypanosomatid lysis induced by Serratia marcescens. Exp Parasitol 115:200–204

    PubMed  CAS  Google Scholar 

  • Castro DP, Seabra SH, Garcia ES, de Souza W, Azambuja P (2007b) Trypanosoma cruzi: ultrastructural studies of adhesion, lysis and biofilm formation by Serratia marcescens. Exp Parasitol 117:201–207

    PubMed  CAS  Google Scholar 

  • Cavalcante RR, Pereira MH, Gontijo NF (2003) Anti-complement activity in the saliva of phlebotomine sand flies and other haematophagous insects. Parasitology 127:87–93

    PubMed  CAS  Google Scholar 

  • Chiari E, Camargo EP (1984) Culturing and cloning of Trypanosoma cruzi. In: Morel CM (ed) Genes and antigens of parasites. A laboratory manual, 2nd edn. Fundacao Oswaldo Cruz, Rio de Janeiro, pp 23–26

    Google Scholar 

  • Contreras VT, Morel CM, Goldenberg S (1985a) Stage specific gene expression precedes morphological changes during Trypanosoma cruzi metacyclogenesis. Mol Biochem Parasitol 14:83–96

    PubMed  CAS  Google Scholar 

  • Contreras VT, Salles JM, Thomas N, Morel CM, Goldenberg S (1985b) In vitro differentiation of Trypanosoma cruzi under chemically defined conditions. Mol Biochem Parasitol 16:315–327

    PubMed  CAS  Google Scholar 

  • Contreras VT, Araújo-Jorge TC, Bonaldo MC, Thomas N, Barbosa HS, Meirelles MNL, Goldenberg S (1988) Biological aspects of the Dm28c clone of Trypanosoma cruzi after metacyclogenesis in chemically defined media. Mem Inst Oswaldo Cruz 83:123–133

    PubMed  CAS  Google Scholar 

  • Cordero EM, Gentil LG, Crisante G, Ramírez JL, Yoshida N, Añez N, da Silveira JF (2008) Expression of GP82 and GP90 surface glycoprotein genes of Trypanosoma cruzi during in vivo metacyclogenesis in the insect vector Rhodnius prolixus. Acta Trop 105:87–91

    PubMed  CAS  Google Scholar 

  • Coura JR (2007) Chagas disease: what is known and what is needed – a background article. Mem Inst Oswaldo Cruz 102(suppl 1):113–122

    PubMed  Google Scholar 

  • Dias E (1940) Xenodiagnosticos seriados em cães infectados com amostras Venezuelanas de “Schizotrypanum cruzi”. Bras Med 54:859–861

    Google Scholar 

  • Dias JCP (2002) Controle da doença de Chagas no Brasil. In: Silveira AC (ed) Controle da doença de Chagas nos países do cone sul da América. Pan American Health Organization, Washington, DC, pp 145–239

    Google Scholar 

  • Dias JCP (2007) Eradication of Chagas disease: What are its possibilities? In: Pan American Health Organization/World Health Organization (PAHO/WHO) and Sociedade de Pediatra do Estado de Rio de Janeiro (SOPERJ) (eds) Update of American Trypanosomiasis and leishmaniasis control and research: Final Report, pp 65–72

    Google Scholar 

  • Eichler S (1998) Interaktionen von Triatominen mit ihren Symbionten und Trypanosomatiden. Ph.D. thesis, Fak Biol, Ruhr-Universität Bochum, Bochum

    Google Scholar 

  • Fernández-Presas AM, Zavala JT, Fauser IB, Merchant MT, Guerrero LR, Willms K (2001) Ultrastructural damage of Trypanosoma cruzi epimastigotes exposed to decomplemented immune sera. Parasitol Res 87:619–625

    PubMed  Google Scholar 

  • Fraidenraich D, Peña C, Isola EL, Lammel EM, Coso O, Díaz Añel A, Pongor S, Baralle F, Torres HN, Flawiá MM (1993) Stimulation of Trypanosoma cruzi adenylyl cyclase by an αD-globin fragment from Triatoma hindgut: effect on differentiation of epimastigote to trypomastigote forms. Proc Natl Acad Sci USA 90:10140–10144

    PubMed  CAS  Google Scholar 

  • Garcia ES (1987) The digestion of Triatominae. In: Brenner RR, Stoka A (eds) Chagas’ disease vector, vol 2, Anatomic and physiological aspects. CRC Press, Boca Raton, pp 47–59

    Google Scholar 

  • Garcia ES, Azambuja P (1991) Development and interaction of Trypanosoma cruzi within the insect vector. Parasitol Today 7:240–244

    PubMed  CAS  Google Scholar 

  • Garcia ES, Gilliam FC (1980) Trypanosoma cruzi development is independent of protein digestion in the gut of Rhodnius prolixus. J Parasitol 66:1052–1053

    PubMed  CAS  Google Scholar 

  • Garcia ES, Gonzalez MS, de Azambuja P, Baralle FE, Fraidenraich D, Torres HN, Flawiá MM (1995) Induction of Trypanosoma cruzi metacyclogenesis in the gut of the hematophagous insect vector, Rhodnius prolixus, by hemoglobin and peptides carrying alpha D-globin sequences. Exp Parasitol 81:255–261

    PubMed  CAS  Google Scholar 

  • Garcia ES, Genta FA, de Azambuja P, Schaub GA (2010) Interactions of intestinal compounds of triatomines and Trypanosoma cruzi. Trends Parasitol 26:499–505

    PubMed  CAS  Google Scholar 

  • Gonzales-Perdomo M, Romero P, Goldenberg S (1988) Cyclic AMP and adenylate cyclase activators stimulate Trypanosoma cruzi differentiation. Exp Parasitol 66:205–212

    PubMed  CAS  Google Scholar 

  • Gonzalez MS, Nogueira NFS, Mello CB, de Souza W, Schaub GA, Azambuja P, Garcia ES (1999) Influence of brain and azadirachtin on Trypanosoma cruzi development in the vector, Rhodnius prolixus. Exp Parasitol 92:100–108

    PubMed  CAS  Google Scholar 

  • Gonzalez MS, Hamedi A, Albuquerque-Cunha JM, Nogueira NFS, de Souza W, Ratcliffe NA, Azambuja P, Garcia ES, Mello CB (2006) Antiserum against perimicrovillar membranes and midgut tissue reduces the development of Trypanosoma cruzi in the insect vector, Rhodnius prolixus. Exp Parasitol 114:297–304

    PubMed  CAS  Google Scholar 

  • Gregório EA, Ratcliffe NA (1991) The distribution of agglutinins and lytic activity against Trypanosoma rangeli and erythrocytes in Rhodnius prolixus and Triatoma infestans tissue extracts and haemolymph. Mem Inst Oswaldo Cruz 86:181–186

    PubMed  Google Scholar 

  • Grillo LA, Majerowicz D, Gondim KC (2007) Lipid metabolism in Rhodnius prolixus (Hemiptera: Reduviidae): role of a midgut triacylglycerol-lipase. Insect Biochem Mol Biol 37:579–588

    PubMed  CAS  Google Scholar 

  • de Isola ELD, Lammel EM, Katzin VJ, Gonzalez Cappa SM (1981) Influence of organ extracts of Triatoma infestans on differentiation of Trypanosoma cruzi. J Parasitol 67:53–58

    PubMed  Google Scholar 

  • de Isola ELD, Lammel EM, González Cappa SM (1986) Trypanosoma cruzi: differentiation after interaction of epimastigotes and Triatoma infestans intestinal homogenate. Exp Parasitol 62:329–335

    PubMed  CAS  Google Scholar 

  • de Isola ELD, Lammel EM, González Cappa SM (1987) Trypanosoma cruzi: differentiation to metacyclic trypomastigotes in the presence of ADP-ribosyltranserase inhibitors. Exp Parasitol 64:424–429

    PubMed  CAS  Google Scholar 

  • Jensen C, Schaub GA (1991) Development of Blastocrithidia triatomae (Trypanosomatidae) in Triatoma infestans after vitamin B-supplementation of the blood-diet of the bug. Europ J Protistol 27:17–20

    Google Scholar 

  • Kleffmann T (1999) Mechanismen der Anheftung und Induktion der Metazyklogenese von Trypanosoma cruzi in Triatoma infestans. Ph.D. thesis, Fak Biol, Ruhr-Universität Bochum, Bochum

    Google Scholar 

  • Kleffmann T, Schmidt J, Schaub GA (1998) Attachment of Trypanosoma cruzi epimastigotes to hydrophobic substrates and use of this property to separate stages and promote metacyclogenesis. J Eukaryot Microbiol 45:548–555

    PubMed  CAS  Google Scholar 

  • Kollien AH, Schaub GA (1997) Trypanosoma cruzi in the rectum of the bug Triatoma infestans: effects of blood ingestion of the vector and artificial diuresis. Parasitol Res 83:781–788

    PubMed  CAS  Google Scholar 

  • Kollien AH, Schaub GA (1998a) The development of Trypanosoma cruzi (Trypanosomatidae) in the reduviid bug Triatoma infestans (Insecta): influence of starvation. J Eukaryot Microbiol 45:59–63

    PubMed  CAS  Google Scholar 

  • Kollien AH, Schaub GA (1998b) Trypanosoma cruzi in the rectum of the bug Triatoma infestans: effects of blood ingestion by the starved vector. Am J Trop Med Hyg 59:166–170

    PubMed  CAS  Google Scholar 

  • Kollien AH, Schmidt J, Schaub GA (1998) Modes of association of Trypanosoma cruzi with the intestinal tract of the vector Triatoma infestans. Acta Trop 70:127–141

    PubMed  CAS  Google Scholar 

  • Kollien AH, Schaub GA (2000) The development of Trypanosoma cruzi in Triatominae. Parasitol Today 16:381–387.

    PubMed  CAS  Google Scholar 

  • Kollien AH, Grospietsch T, Kleffmann T, Zerbst-Boroffka I, Schaub GA (2001) Ionic composition of the rectal contents and excreta of the reduviid bug Triatoma infestans. J Insect Physiol 47:739–747

    PubMed  CAS  Google Scholar 

  • Kollien AH, Waniek PJ, Pröls F, Habedank B, Schaub GA (2004a) Cloning and characterization of a trypsin-encoding cDNA of the human body louse Pediculus humanus. Insect Mol Biol 13:9–18

    PubMed  CAS  Google Scholar 

  • Kollien AH, Waniek PJ, Nisbet AJ, Billingsley PF, Schaub GA (2004b) Activity and sequence characterization of two cysteine proteases in the digestive tract of the reduviid bug Triatoma infestans. Insect Mol Biol 1:569–579

    Google Scholar 

  • Krieger MA, Goldenberg S (1998) Representation of differential expression: a new approach to study differential gene expression in trypanosomatids. Parasitol Today 14:163–166

    PubMed  CAS  Google Scholar 

  • Ljunggren A, Redzynia I, Alvarez-Fernandez M, Abrahamson M, Mort JS, Krupa JC, Jaskolski M, Bujacz G (2007) Crystal structure of the parasite protease inhibitor chagasin in complex with a host target cysteine protease. J Mol Biol 371:137–153

    PubMed  CAS  Google Scholar 

  • Löfgren SE, Miletti LC, Steindel M, Bachère E, Barracco MA (2008) Trypanocidal and leishmanicidal activities of different antimicrobial peptides (AMPs) isolated from aquatic animals. Exp Parasitol 118:197–202

    PubMed  Google Scholar 

  • Lopez-Ordoñez T, Rodriguez MH, de la Cruz Hernández-Hernández F (2001) Characterization of a cDNA encoding a cathepsin L-like protein of Rhodnius prolixus. Insect Mol Biol 10:505–511

    PubMed  Google Scholar 

  • Maddrell SHP (1991) The fastest fluid-secreting cell known: the upper Malpighian tubule cell of Rhodnius. Bioessays 13:357–362

    Google Scholar 

  • Martins RM, Amino R, Daghastanli KR, Cuccovia IM, Juliano MA, Schenkman S (2008) A short proregion of trialysin, a pore-forming protein of Triatoma infestans salivary glands, controls activity by folding the N-terminal lytic motif. FEBS J 275:994–1002

    PubMed  CAS  Google Scholar 

  • Medrano-Mercado N, Ugarte-Fernandez R, Butrón V, Uber-Busek S, Guerra HL, de Araújo-Jorge TC, Correa-Oliveira R (2008) Urban transmission of Chagas disease in Cochabamba, Bolivia. Mem Inst Oswaldo Cruz 103:423–430

    PubMed  CAS  Google Scholar 

  • Meiser CK, Piechura H, Werner T, Dittmeyer-Schäfer S, Meyer HE, Warscheid B, Schaub GA, Balczun C (2010a) Kazal-type inhibitors in the stomach of Panstrongylus megistus (Triatominae, Reduviidae). Insect Biochem Mol Biol 40:345–353

    PubMed  CAS  Google Scholar 

  • Meiser CK, Piechura H, Meyer HE, Warscheid B, Schaub GA, Balczun C (2010b) A salivary serine protease of the haematophagous reduviid Panstrongylus megistus: sequence characterization, expression pattern and characterization of proteolytic activity. Insect Mol Biol 19:409–421

    PubMed  CAS  Google Scholar 

  • Meiser CK, Schaub GA (2011) Xenodiagnosis. In: Mehlhorn, H. (ed) Parasitology research monographs. Vol. 1, Nature helps… How plants and other organisms contribute to solve health problems. Springer, Heidelberg, pp 273–299

    Google Scholar 

  • Mello CB, Azambuja P, Garcia ES, Ratcliffe NA (1996) Differential in vitro and in vivo behavior of three strains of Trypanosoma cruzi in the gut and hemolymph of Rhodnius prolixus. Exp Parasitol 82:112–121

    PubMed  CAS  Google Scholar 

  • Monteiro ACS, Abrahamson M, Lima APCA, Vannier-Santos MA, Scharfstein J (2001) Identification, characterization and localization of chagasin, a tight-binding cysteine protease inhibitor in Trypanosoma cruzi. J Cell Sci 114:3933–3942

    PubMed  CAS  Google Scholar 

  • Monteiro ACS, de Oliveira Neto OB, Del Sarto RP, de Magalhaes MTQ, Lima JN, Lacerda AF, Oliveira RS, Scharfstein J, da Silva MCM, Valencia JWA, Jimenez AV, Grossi-de-Sal MF (2008) A recombinant form of chagasin from Trypanosoma cruzi: inhibitory activity on insect cysteine proteinases. Pest Manag Sci 64:755–760

    CAS  Google Scholar 

  • Moraes CS, Seabra SH, Albuquerque-Cunha JM, Castro DP, Genta FA, de Souza W, Brazil RP, Garcia ES, Azambuja P (2009) Prodigiosin is not a determinant factor in lysis of Leishmania (Viannia) braziliensis after interaction with Serratia marcescens D-mannose sensitive fimbriae. Exp Parasitol 122:84–90

    PubMed  CAS  Google Scholar 

  • Mühlpfordt H (1959) Der Einfluß der Darmsymbionten von Rhodnius prolixus auf Trypanosoma cruzi. Z Trop Med Parasitol 10:313–327

    Google Scholar 

  • Nogueira NFS, Gonzalez MS, Gomes JE, de Souza W, Garcia ES, Azambuja P, Nohara LL, Almeida IC, Zingales B, Colli W (2007) Trypanosoma cruzi: involvement of glycoinositolphospholipids in the attachment to the luminal midgut surface of Rhodnius prolixus. Exp Parasitol 116:120–128

    PubMed  CAS  Google Scholar 

  • Parsons M, Ruben L (2000) Pathways involved in environmental sensing in trypanosomatids. Parasitol Today 16:56–62

    PubMed  CAS  Google Scholar 

  • Pereira MEA, Andrade AFB, Ribeiro JMC (1981) Lectins of distinct specificity in Rhodnius prolixus interact selectively with Trypanosoma cruzi. Science 211:597–600

    PubMed  CAS  Google Scholar 

  • Rawlings ND, Barrett AJ (1994) Families of cysteine peptidases. Methods Enzymol 244:461–486

    PubMed  CAS  Google Scholar 

  • Ratcliffe NA, NigamY MCB, Garcia ES, Azambuja P (1996) Trypanosoma cruzi and erythrocyte agglutinins: a comparative study of occurrence and properties in the gut and hemolymph of Rhodnius prolixus. Exp Parasitol 83:83–93

    PubMed  CAS  Google Scholar 

  • Rojas M, Labrador I, Concepción JL, Aldana E, Avilan L (2008) Characteristics of plasminogen binding to Trypanosoma cruzi epimastigotes. Acta Trop 107:54–58

    PubMed  CAS  Google Scholar 

  • Sajid M, McKerrow JH (2002) Cysteine proteases of parasitic organisms. Mol Biochem Parasitol 120:1–21

    PubMed  CAS  Google Scholar 

  • Schaub GA (1988) Direct transmission of Trypanosoma cruzi between vectors of Chagas’ disease. Acta Trop 45:11–19

    PubMed  CAS  Google Scholar 

  • Schaub GA (1989a) Trypanosoma cruzi: quantitative studies of development of two strains in small intestine and rectum of the vector Triatoma infestans. Exp Parasitol 6:260–273

    Google Scholar 

  • Schaub GA (1989b) Does Trypanosoma cruzi stress its vector? Parasitol Today 5:185–188

    PubMed  CAS  Google Scholar 

  • Schaub GA (1992) The effects of trypanosomatids on insects. Adv Parasitol 31:255–319

    PubMed  CAS  Google Scholar 

  • Schaub GA (2008) Kissing bugs. In: Mehlhorn H (ed) Encyclopedia of parasitology, vol 1, 3rd edn. Springer, Heidelberg, pp 170–173

    Google Scholar 

  • Schaub GA (2009) Interactions of trypanosomatids and triatomines. Adv Insect Physiol 37:177–242

    Google Scholar 

  • Schaub GA, Böker CA (1986) Colonization of the rectum of Triatoma infestans by Trypanosoma cruzi: influence of starvation studied by scanning electron microscopy. Acta Trop 43:349–354

    PubMed  CAS  Google Scholar 

  • Schaub GA, Lösch P (1988) Trypanosoma cruzi: origin of metacyclic trypomastigotes in the urine of the vector Triatoma infestans. Exp Parasitol 65:174–186

    PubMed  CAS  Google Scholar 

  • Schaub GA, Lösch P (1989) Parasite/host-interrelationships of the trypanosomatids Trypanosoma cruzi and Blastocrithidia triatomae and the reduviid bug Triatoma infestans: influence of starvation of the bug. Ann Trop Med Parasitol 83:215–223

    PubMed  CAS  Google Scholar 

  • Schaub GA, Wülker W (1984) Tropische Parasitosen im Programm der Weltgesundheitsorganisation. Universitas 39:71–80

    Google Scholar 

  • Schaub GA, Wunderlich F (1985) Die Chagas-Krankheit. Biol unserer Zeit 15:42–51

    Google Scholar 

  • Schaub GA, Grünfelder C, Zimmermann D, Peters W (1989) Binding of lectin-gold conjugates by two Trypanosoma cruzi strains in ampullae and rectum of Triatoma infestans. Acta Trop 46:291–301

    PubMed  CAS  Google Scholar 

  • Schmidt J, Kleffmann T, Schaub GA (1998) Hydrophobic attachment of Trypanosoma cruzi to a superficial layer of the rectal cuticle in the bug Triatoma infestans. Parasitol Res 84:527–536

    PubMed  CAS  Google Scholar 

  • Schofield CJ (1994) Triatominae: biology and control. Eurocommunica Publications, West Sussex

    Google Scholar 

  • Schottelius J (1982) The identification by lectins of two strain groups of Trypanosoma cruzi. Z Parasitenkd 68:147–154

    PubMed  CAS  Google Scholar 

  • Schuster JP, Schaub GA (2000) Trypanosoma cruzi: skin-penetration kinetics of vector-derived metacyclic trypomastigotes. Int J Parasitol 30:1475–1479

    PubMed  CAS  Google Scholar 

  • Schwarz A, Helling S, Collin N, Teixeira CR, Medrano-Mercado N, Hume JCC, Assumpção TC, Marcus K, Stephan C, Meyer HE, Ribeiro JMC, Billingsley PF, Valenzuela JG, Sternberg JM, Schaub GA (2009) Immunogenic salivary proteins of Triatoma infestans: development of a recombinant antigen for the detection of low-level infestation of triatomines. PLoS Negl Trop Dis 3(10):e532. doi:10.1371/journal.pntd.0000532

    PubMed  Google Scholar 

  • Schwarz A, Medrano-Mercado N, Billingsley PF, Schaub GA, Sternberg JM (2010) IgM-antibody responses of chickens to salivary antigens of Triatoma infestans as early biomarkers for low-level infestation of triatomines. Int J Parasitol 40:1295–1302

    PubMed  CAS  Google Scholar 

  • Snary D (1985) Receptors and recognition mechanisms of Trypanosoma cruzi. Trans R Soc Trop Med Hyg 79:587–590

    PubMed  CAS  Google Scholar 

  • Terra WR (1990) Evolution of digestive systems of insects. Annu Rev Entomol 35:181–200

    Google Scholar 

  • Tibayrenc M, Ward P, Moya A, Ayala FJ (1986) Natural populations of Trypanosoma cruzi, the agent of Chagas’ disease, have a complex multiclonal structure. Proc Natl Acad Sci USA 83:115–119

    PubMed  CAS  Google Scholar 

  • Tyler KM, Engman DM (2001) The life cycle of Trypanosoma cruzi revisited. Int J Parasitol 31:472–481

    PubMed  CAS  Google Scholar 

  • Ursic-Bedoya RJ, Nazzari H, Cooper D, Triana O, Wolff M, Lowenberger C (2008) Identification and characterization of two novel lysozymes from Rhodnius prolixus, a vector of Chagas’ disease. J Insect Physiol 54:593–603

    PubMed  CAS  Google Scholar 

  • Vallejo GA, Guhl F, Schaub GA (2009) Triatominae-Trypanosoma cruzi/T. rangeli: vector-parasite interactions. Acta Trop 110:137–147

    PubMed  CAS  Google Scholar 

  • Vargas LG, Zeledón R (1985) Effect of fasting on Trypanosoma cruzi infection in Triatoma dimidiata (Hemiptera: Reduviidae). J Med Entomol 22:683

    PubMed  CAS  Google Scholar 

  • Wainszelbaum MJ, Belaunzaran ML, Lammel EM, Florin-Christensen M, Florin-Christensen J, Isola ELD (2003) Free fatty acids induce cell differentiation to infective forms in Trypanosoma cruzi. Biochem J 375:705–712

    PubMed  CAS  Google Scholar 

  • Waniek PJ, Mendonça-Lima L, Menezes GB, Jansen AM, Araújo CAC (2009) Recombinant expression and characterization of a lysozyme from the midgut of Triatoma brasiliensis (Hemiptera, Reduviidae) in comparison with intestinal muramidase activity. Physiol Entomol 34:309–317

    CAS  Google Scholar 

  • WHO (1982) Chagas’ disease. In: UNDP/World Bank/WHO (eds) Sixth programme report. Special programme for research and training in tropical diseases. WHO, Geneva, pp 137–190

    Google Scholar 

  • WHO (2007) New global effort to eliminate Chagas disease. Wkly Epidemiol Rec 82:259–260

    Google Scholar 

  • Whitten M, Sun F, Tew I, Schaub GA, Soukou C, Nappi A, Ratcliffe NA (2007) Differential modulation of Rhodnius prolixus nitric oxide activities following challenge with Trypanosoma rangeli, T. cruzi and bacterial cell wall components. Insect Biochem Mol Biol 37:440–452

    PubMed  CAS  Google Scholar 

  • Zeledón R (1997) Infection of the insect host by Trypanosoma cruzi. In: Carcavallo RU, Galindez I, Jurberg J, Lent H (eds) Atlas of Chagas’ disease vectors in the America, vol 1. Editora Fiocruz, Rio de Janeiro, pp 271–287

    Google Scholar 

  • Zingales B, Andrade SG, Briones MRS, Campbell DA, Chiari E, Fernandes O, Guhl F, Lages-Silva E, Macedo AM, Machado CR, Miles MA, Romanha AJ, Sturm NR, Tibayrenc M, Schijman AG (2009) A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz 104:1051–1054

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Randy Cassada for reading and correcting the English version and are deeply grateful for the funding of the investigations and travels by the UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases, the Volkswagenstiftung, the German Academic Exchange Service (DAAD), European Community programmes, the Humboldt Foundation and the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter A. Schaub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schaub, G.A., Meiser, C.K., Balczun, C. (2011). Interactions of Trypanosoma cruzi and Triatomines. In: Mehlhorn, H. (eds) Progress in Parasitology. Parasitology Research Monographs, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21396-0_9

Download citation

Publish with us

Policies and ethics