A Look at the World of Ticks

  • Trevor N. Petney
  • Richard G. Robbins
  • Alberto A. Guglielmone
  • Dmitry A. Apanaskevich
  • Agustín Estrada-Peña
  • Ivan G. Horak
  • Renfu Shao
Part of the Parasitology Research Monographs book series (Parasitology Res. Monogr., volume 2)


Ticks are one of the best known groups of parasites. They have accompanied humans and their domestic animals throughout recorded history (Hoogstraal 1970 and subsequent volumes) and have become a major focus of medical and veterinary research, not only because of their direct pathogenic influence on hosts, such as blood loss and tick-induced paralysis (Gothe 1999; Pfäffle et al. 2009), but more importantly because of their role as vectors of a very wide range of viral, bacterial and protozoan diseases (Nicholson et al. 2009). Indeed, ticks are of considerable economic importance as a constraint to animal production in most of the countries where they occur (Jongejan and Uilenberg 2004). Despite this sinister background, ticks are a fascinating, highly successful group, manifesting a wide variety of adaptations to their hosts and the environments in which they live.


Lyme Disease Tick Species Life History Stage Ixodid Tick Tick Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the Centers for Disease Control and Prevention (Atlanta, Georgia, USA) for the figures used.


  1. Anderson RM, May RM (1991) Infectious diseases of humans: dynamics and control. Oxford University Press, OxfordGoogle Scholar
  2. Armed Forces Pest Management Board (2009) Personal protective measures against insects and other arthropods of military significance. Armed Forces Pest Management Board, Technical Guide No. 36Google Scholar
  3. Arthur DR (1963) British ticks. Butterworths, LondonGoogle Scholar
  4. Ashley JL, Ames HD, Lewis EE, Brewster CC, Huckaba R (2006) Toxicity of three acaricides to Tetranychus urticae (Tetranychidae: Acari) and Orius insidiosus (Anthrocoridae: Hemiptera). J Econ Entomol 99:54–59PubMedCrossRefGoogle Scholar
  5. Begon M (2008) Effects of host diversity on disease dynamics. In: Ostfeld RS, Keesing F, Eviner VT (eds) Infectious disease ecology: effects of ecosystems on disease and of disease on ecosystems. Princeton University Press, PrincetonGoogle Scholar
  6. Belozerov VN, Naumov RL (2002) Nymphal diapause and its photoperiodic control in the tick Ixodes scapularis (Acari: Ixodidae). Folia Parasitol 49:314–318PubMedGoogle Scholar
  7. Carroll JF, Schmidtmann ET (1996) Dispersal of blacklegged tick (Acari: Ixodidae) nymphs and adults at the woods-pasture interface. J Med Entomol 33:554–558PubMedGoogle Scholar
  8. Chemini C, Rizzoli A (2003) Land use change and biodiversity conservation in the Alps. J Mountain Ecol 7(suppl):1–7Google Scholar
  9. Dautel H, Dippel C, Oehme R, Hartelt K, Schettler E (2006) Evidence for an increased geographical distribution of Dermacentor reticulatus in Germany and detection of Rickettsia sp. RpA4. Int J Med Microbiol 296:149–156PubMedCrossRefGoogle Scholar
  10. Dautel H, Kahl O, Knülle W (2009) The soft tick Argas reflexus (F.) (Acari, Argasidae) in urban environments and its medical significance in Berlin (West). J Appl Entomol 111:380–390CrossRefGoogle Scholar
  11. Dumbleton LJ (1961) The ticks (Acarina: Ixodidae) of sea birds in New Zealand waters. NZ J Sci 4:760–769Google Scholar
  12. Durden LA, Keirans JE (1996) Host-parasite coextinction and the plight of tick conservation. Am Entomol 42:87–91Google Scholar
  13. Estrada-Peña A (2001) Distribution, abundance, and habitat preferences of Ixodes ricinus (Acari: Ixodidae) in northern Spain. J Med Entomol 38:361–370PubMedCrossRefGoogle Scholar
  14. Estrada-Peña A (2003) The relationships between habitat topology, critical scales of connectivity and tick abundance Ixodes ricinus in a heterogeneous landscape in northern Spain. Ecography 26:661–671CrossRefGoogle Scholar
  15. Estrada-Peña A (2005) Effects of habitat suitability and landscape patterns on tick (Acarina) metapopulation processes. Landscape Ecol 20:529–541CrossRefGoogle Scholar
  16. Estrada-Pena A, Jongejan F (1999) Ticks feeding on humans: a review of records on human-biting Ixodoidea with special reference to pathogen transmission. Exp Appl Acarol 23:685–715PubMedCrossRefGoogle Scholar
  17. Faulde M, Hoffmann G (2001) Vorkommen und Verhütung vektorassoziierter Erkrankungen des Menschen in Deutschland unter Berücksichtigung zoonotischer Aspekte. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitschutz 44:116–136CrossRefGoogle Scholar
  18. Faulde M, Scharninghausen J, Matthias T (2008) Preventive effect of permethrin-impregnated clothing to Ixodes ricinus ticks and associated Borrelia burgdorferi s.l. in Germany. Int J Med Microbiol 298:321–324CrossRefGoogle Scholar
  19. Felz MW, Smith CD, Swift TR (2000) A six-year-old girl with tick paralysis. N Engl J Med 342:90–94PubMedCrossRefGoogle Scholar
  20. Fischer U, Siegmund B (2007) Borreliose – Zeckeninfektion mit Tarnkappe, 5th edn. Hirzel-Verlag, StuttgartGoogle Scholar
  21. Goodman JL, Dennis DT, Sonenshine DE (eds) (2005) Tick-borne diseases of humans. American Society for Microbiology Press, Washington, p xiii + 401Google Scholar
  22. Gothe R (1999) Zeckentoxikosen. Hieronymus, MunichGoogle Scholar
  23. Graf JF, Gogolewski R, Leach-Bing N, Sabatini GA, Molteno MB, Bordin EL, Arantes GJ (2004) Tick control: an industry point of view. Parasitology 129:S427–S442PubMedCrossRefGoogle Scholar
  24. Gratten-Smith PJ, Jg M, Johnston HM, Yiannikas C, Malik R, Russell R, Ouvrier RA (1997) Clinical and neurophysiological features of tick paralysis. Brain 120:1975–1987CrossRefGoogle Scholar
  25. Gregson JD (1973) Tick paralysis: an appraisal of natural and experimental data. Monograph No. 9, Canada Department of Agriculture, Ottawa, 109 ppGoogle Scholar
  26. Grimaldi DA, Engel MS, Nascimbene PC (2002) Fossiliferous Cretaceous amber from Myanmar (Burma): its rediscovery, biotic diversity, and paleontological significance. Am Mus Novit 3361:71CrossRefGoogle Scholar
  27. Guglielmone AA, Estrada-Peña A, Keirans JE, Robbins RG (2003) Ticks (Acari: Ixodida) of the Neotropical zoogeographic region. International consortium on ticks and tick-borne diseases. Atalanta, Houten, p 173Google Scholar
  28. Guglielmone AA, Robbins RG, Apanaskevich DA, Petney TN, Estrada-Peña A, Horak IG, Shao RF, Barker SC (2010) The Argasidae, Ixodidae and Nuttalliellidae (Acari: Ixodida) of the world: a list of valid species names. Zootaxa 2528:1–28Google Scholar
  29. Halliday RB, Oconnor BM, Baker AS (2000) Global diversity of mites. In: Raven PH, Williams T (eds) Nature and human society: the quest for a sustainable world. National Academy Press, Washington, DC, pp 192–203Google Scholar
  30. Hartelt K, Wurst E, Collatz J, Zimmermann G, Kleespies RG, Oehme RM, Kimmig P, Steidle JL, Mackenstedt U (2008) Biological control of the tick Ixodes ricinus with entomopathogenic fungi and nematodes: preliminary results from laboratory experiments. Int J Med Microbiol 298:314–320CrossRefGoogle Scholar
  31. Hoogstraal H (1970) Bibliography of ticks and tick-borne diseases from Homer (about 800 B.C.) to December 1969. NAMRU 3, Al-Ahram Press in Cairo, EgyptGoogle Scholar
  32. Hoogstraal H (1985) Argasid and nuttalliellid ticks as parasites and vectors. Adv Parasitol 24:136–220Google Scholar
  33. Hoogstraal H, Aeschlimann A (1982) Tick-host specificity. Mitteilungen der Schweizerischen Entomologischen Gesellschaft/Bulletin de la Société Entomologique Suisse 55:5–32Google Scholar
  34. Jones HI, Shellam GR (1999) The occurrence of blood-inhabiting protozoa in captive and free-living penguins. Polar Biol 21:5–10CrossRefGoogle Scholar
  35. Jongejan F, Uilenberg G (2004) The global importance of ticks. Parasitology 129(Suppl):S3–S14PubMedGoogle Scholar
  36. Kahl O (1996) Fatal attraction or how do we get tick bites? Infection 24:394–395PubMedCrossRefGoogle Scholar
  37. Keesing GF, Brunner J, Duerr S, Killilea M, LoGiudice K, Schmidt K, Vuong H, Ostfeld RS (2009) Hosts as ecological traps for the vector of Lyme disease. Proc R Soc Biol Sci 279:3911–3919CrossRefGoogle Scholar
  38. Keirans JE (2009) Order Ixodida. In: Krantz GW, Walter DE (eds) A manual of acarology, 3rd edn. Texas Tech University Press, Lubbock, pp 111–123Google Scholar
  39. Klompen H, Grimaldi D (2001) First Mesozoic record of a parasitiform mite: a larval argasid tick in Cretaceous amber (Acari: Ixodida: Argasidae). Ann Entomol Soc Am 94:10–15CrossRefGoogle Scholar
  40. Lindgren E, Tälleklint L, Polfeldt T (2000) Impact of climatic change on the northern latitude limit and population density of the disease-transmitting European tick Ixodes ricinus. Environ Health Perspect 108:119–123PubMedCrossRefGoogle Scholar
  41. Maes E, Lecomte P, Ray N (1998) A cost-of-illness study of Lyme disease in the United States. Clin Ther 20:993–1008PubMedCrossRefGoogle Scholar
  42. Merler S, Furlanello C, Chemini C, Nicolini G (1996) Classification tree methods for analysis of mesoscale distribution of Ixodes ricinus (Acari: Ixodidae) in Trentino, Italian Alps. J Med Entomol 33:888–893PubMedGoogle Scholar
  43. Müller O, Krawinkel M (2005) Malnutrition and health in developing countries. Can Med Assoc J 173:279–289CrossRefGoogle Scholar
  44. Mwangi EN, Kaaya GP (1997) Prospects of using tick parasitoids (Insecta) for tick management in Africa. Int J Acarol 23:215–219CrossRefGoogle Scholar
  45. Nicholson WL, Sonenshine DE, Lane RS, Uilenberg G (2009) Ticks (Ixodida). In: Mullen GR, Durden LA (eds) Medical and veterinary entomology, 2nd edn. Elsevier, Amsterdam, pp 493–542Google Scholar
  46. Norval RAI (1977) Studies on the ecology of the tick Amblyomma hebraeum Koch in the Eastern Cape province of South Africa. II. Survival and development. J Parasitol 63:740–747PubMedCrossRefGoogle Scholar
  47. Oliver JH Jr (1989) Biology and systematics of ticks (Acari: Ixodidae). Annu Rev Ecol Syst 20:397–430CrossRefGoogle Scholar
  48. Ostfeld RS, Jones CG, Wolff JO (1996) Of mice and mast: ecological connections in eastern deciduous forests. Bioscience 46:323–330CrossRefGoogle Scholar
  49. Parola P, Raoult D (2001) Ticks and tick-borne bacterial diseases in humans: an emerging infectious threat. Clin Infect Dis 32:897–928PubMedCrossRefGoogle Scholar
  50. Petney TN, Andrews RH, Bull CM (1983) Movement and host finding by unfed nymphs of two Australian reptile ticks. Aust J Zool 31:717–721CrossRefGoogle Scholar
  51. Pfäffle M, Petney T, Elgas M, Skuballa J, Taraschewski H (2009) Tick-induced blood loss leads to regenerative anaemia in the European hedgehog (Erinaceus europaeus). Parasitology 136:443–452PubMedCrossRefGoogle Scholar
  52. Piesman J, Eisen L (2008) Prevention of tick-borne diseases. Annu Rev Entomol 53:323–343PubMedCrossRefGoogle Scholar
  53. Poinar GO Jr, Brown A (2003) A new genus of hard ticks from Cretaceous Burmese amber (Acari: Ixodida: Ixodidae). Syst Parasitol 54:199–205PubMedCrossRefGoogle Scholar
  54. Poinar GO Jr, Buckley R (2008) Compluriscutula vetulum (Acari: Ixodida: Ixodidae), a new genus and species of hard tick from Lower Cretaceous Burmese amber. Proc Entomol Soc Wash 110:445–450CrossRefGoogle Scholar
  55. Quercia O, Emiliani F, Foschi FG, Stefanini GF (2005) Anaphylactic shock to Argas reflexus bite. Eur J Allergy Clin Immunol 37:66–68Google Scholar
  56. Randolph SE (2004) Tick ecology: processes and patterns behind the epidemiological risk posed by ixodid ticks as vector. Parasitology 129:37–65Google Scholar
  57. Randolph SE, Green RM, Hoodless AN, Peacey MF (2002) An empirical quantitative framework for the seasonal population dynmaics of the tick Ixodes ricinus. Int J Parasitol 32:979–989PubMedCrossRefGoogle Scholar
  58. Samish M, Rehacek J (1999) Pathogens and predators of ticks and their potential in biological control. Annu Rev Entomol 44:159–182PubMedCrossRefGoogle Scholar
  59. Schwantes U, Dautel H, Jung G (2008) Prevention of infectious tick-borne diseases in humans: comparative studies of the repellency of different dodecanoic acid-formulations against Ixodes ricinus ticks (Acari: Ixodidae). Parasit Vectors. doi: 10.1186/1756-3305-1-8
  60. Schwarz A, Maier WA, Kistemann T, Kampen H (2009) Analysis of the distribution of the tick Ixodes ricinus L. (Acari: Ixodidae) in a nature reserve of western Germany using Geographic Information Systems. Int J Hyg Environ Health 212:87–96PubMedCrossRefGoogle Scholar
  61. Spiewak R, Lundberg M, Johansson SGO, Buczek A (2006) Allergy to pigeon ticks (Argas reflexus) in Upper Silesia, Poland. Ann Agric Environ Med 13:107–112PubMedGoogle Scholar
  62. Stafford KC, Denicola AJ, Kilpatrick HJ (2003) Reduced abundance of Ixodes scapularis (Acari: Ixodidae) and the tick parasitoid Ixodiphagus hookeri (Hymenoptera: Encyrtidae) with reduction of white-tailed deer. J Med Entomol 40:642–652PubMedCrossRefGoogle Scholar
  63. Staub D, Debrunner M, Amsler L, Steffen R (2002) Effectiveness of a repellent containing DEET and EBAAP for preventing tick bites. Wilderness Environ Med 13:12–20PubMedCrossRefGoogle Scholar
  64. Stjernberg L, Berglund J (2005) Detecting ticks on light versus dark clothing. Scand J Infect Dis 37:361–364PubMedCrossRefGoogle Scholar
  65. Sreter-Lancz Z, Szell Z, Kovacs G, Egyed L, Marialigeti K, Sreter, T (2006) Rickettsiae of the spotted-fever group in ixodid ticks from Hungary: identification of a new genotype (‘Candidatus Rickettsia kotlanii’). Annals of Tropical Medicine and Parasitology 100: 229–236Google Scholar
  66. Stone BF, Binnington KC, Gauci M, Aylward JH (1989) Tick/host interactions for Ixodes holocyclus: role, effects, biosynthesis and nature of its toxic and allergic oral secretions. Exp Appl Acarol 7:59–69PubMedCrossRefGoogle Scholar
  67. Süss J, Schrader C (2004) Durch Zecken übertragene humanpathogene und bisher als apathogen geltende Mikroorganismen in Europa. Teil 1: Zecken und Viren. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 47:392–404CrossRefGoogle Scholar
  68. Süss J, Fingerle V, Hunfeld KP, Schrader C, Wilske B (2004) Durch Zecken übertragene humanpathogene und bisher als apathogen geltende Mikroorganismen in Europa. Teil 2: Bakterien, Parasiten und Mischinfektionen. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 47:470–486PubMedCrossRefGoogle Scholar
  69. Talaska T (2002) Borreliose-Epidemiologie (unter Berücksichtigung des Bundeslandes Brandenburg). Brandenburger Ärzteblatt 11:338–340Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Trevor N. Petney
    • 1
  • Richard G. Robbins
    • 2
  • Alberto A. Guglielmone
    • 3
  • Dmitry A. Apanaskevich
    • 4
  • Agustín Estrada-Peña
    • 5
  • Ivan G. Horak
    • 6
  • Renfu Shao
    • 7
  1. 1.Department of Ecology and ParasitologyKarlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.ISD/AFPMB, Walter Reed Army Medical CenterWashingtonUSA
  3. 3.Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria RafaelaRafaelaArgentina
  4. 4.U.S. National Tick Collection, Institute of Arthropodology and ParasitologyGeorgia Southern UniversityStatesboroUSA
  5. 5.Department of Parasitology, Veterinary FacultyUniversidad de ZaragozaZaragozaSpain
  6. 6.Department of Veterinary Tropical Diseases, Faculty of Veterinary ScienceUniversity of PretoriaPretoriaSouth Africa
  7. 7.Parasitology Section, School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneAustralia

Personalised recommendations