A Multisensory Monitoring and Interpretation Framework Based on the Model–View–Controller Paradigm

  • José Carlos Castillo
  • Angel Rivas-Casado
  • Antonio Fernández-Caballero
  • María T. López
  • Rafael Martínez-Tomás
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6686)


This paper proposes a monitoring and interpretation framework inspired in the Model–View–Controller (MVC) paradigm. Indeed, the paper proposes the extension of the traditional MVC paradigm to make it more flexible in incorporating the functionalities of a monitoring and interpretation system. The proposed model is defined as a hybrid distributed system where remote nodes perform lower level processing as well as data acquisition, while a central node is in charge of collecting the information and of its fusion. Firstly, the framework levels as well as their functionalities are described. Then, a fundamental part of the proposed framework, namely the common model, is introduced.


Central Node Common Model Event Fusion Sensor Fusion Remote Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Celik, T., Kusetogullari, H.: Solar-powered automated road surveillance system for speed violation detection. IEEE Transactions on Industrial Electronics 57(9), 3216–3227 (2010)CrossRefGoogle Scholar
  2. 2.
    Fernández-Caballero, A., Castillo, J.C., Serrano-Cuerda, J., Maldonado-Bascón, S.: Real-time human segmentation in infrared videos. Expert Systems with Applications 38(3), 2577–2584 (2011)CrossRefGoogle Scholar
  3. 3.
    Fernández-Caballero, A., Castillo, J.C., Martínez-Cantos, J., Martínez-Tomás, R.: Optical flow or image subtraction in human detection from infrared camera on mobile robot. Robotics and Autonomous Systems 58(12), 1273–1280 (2010)CrossRefGoogle Scholar
  4. 4.
    Gascueña, J.M., Fernández-Caballero, A.: Agent-oriented modeling and development of a person-following mobile robot. Expert Systems with Applications 38(4), 4280–4290 (2011)CrossRefGoogle Scholar
  5. 5.
    Geradts, Z., Bijhold, J.: Forensic video investigation. In: Multimedia Video Based Surveillance Systems, ch. 1, pp. 3–12 (2000)Google Scholar
  6. 6.
    Krumm, J., Harris, S., Meyers, B., Brumitt, B., Hale, M., Shafer, S.: Multi-camera multi-person tracking for easyliving. In: Proceedings of the Third IEEE International Workshop on Visual Surveillance, pp. 3–10 (2000)Google Scholar
  7. 7.
    Lo, B.P.L., Sun, J., Velastin, S.A.: Fusing visual and audio information in a distributed intelligent surveillance system for public transport systems. Acta Automatica Sinica 29(3), 393–407 (2003)Google Scholar
  8. 8.
    Moreno-Garcia, J., Rodriguez-Benitez, L., Fernández-Caballero, A., López, M.T.: Video sequence motion tracking by fuzzification techniques. Applied Soft Computing 10(1), 318–331 (2010)CrossRefGoogle Scholar
  9. 9.
    Nguyen, N.T., Venkatesh, S., West, G., Bui, H.H.: Multiple camera coordination in a surveillance system. ACTA Automatica Sinica 29(3), 408–422 (2003)Google Scholar
  10. 10.
    Reenskaug, T.: Thing-model-view-editor - an example from a planning system (1979),
  11. 11.
    Rivas-Casado, A., Martínez-Tomás, R., Fernández-Caballero, A.: Multiagent system for knowledge-based event recognition and composition. Expert Systems: The Journal of Knowledge Engineering (2011) (in press)Google Scholar
  12. 12.
    Rodriguez, M.D., Shah, M.: Visual surveillance in maritime port facilities. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 6978, pp. 697811–697818 (2008)Google Scholar
  13. 13.
    Ronetti, N., Dambra, C.: Railway station surveillance: the Italian case. In: Multimedia Video Based Surveillance Systems, ch. 1, pp. 13–20 (2000)Google Scholar
  14. 14.
    White, I.H., Crisp, M.J., Penty, R.V.: A photonics based intelligent airport surveillance and tracking system. In: Proceedings of the 24th IEEE International Conference on Advanced Information Networking and Applications, pp. 11–16 (2010)Google Scholar
  15. 15.
    Wong, W.K., Lim, H.L., Loo, C.K., Lim, W.S.: Home alone faint detection surveillance system using thermal camera. In: Second International Conference on Computer Research and Development, pp. 747–751 (2010)Google Scholar
  16. 16.
    Xu, M., Orwell, J., Lowey, L., Thirde, D.: Architecture and algorithms for tracking football players with multiple cameras. IEE Proceedings - Vision, Image and Signal Processing 152(2), 232–241 (2005)CrossRefGoogle Scholar
  17. 17.
    Yin, Z., Collins, R.: Moving object localization in thermal imagery by forward-backward motion history images. In: Augmented Vision Perception in Infrared, pp. 271–290 (2009)Google Scholar
  18. 18.
    Yuan, X., Sun, Z., Varol, Y., Bebis, G.: A distributed visual surveillance system. In: Proceedings of the IEEE Conference on Advanced Video and Signal Based Surveillance, pp. 199–204 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • José Carlos Castillo
    • 1
  • Angel Rivas-Casado
    • 2
  • Antonio Fernández-Caballero
    • 1
    • 3
  • María T. López
    • 1
    • 3
  • Rafael Martínez-Tomás
    • 2
  1. 1.n&aIS GroupInstituto de Investigación en Informática de Albacete (I3A)AlbaceteSpain
  2. 2.Departamento de Inteligencia Artificial, E.T.S.I. InformáticaUniversidad Nacional de Educación a DistanciaMadridSpain
  3. 3.Departamento de Sistemas InformáticosUniversidad de Castilla-La ManchaAlbaceteSpain

Personalised recommendations