Advertisement

On the Use of Human-Guided Evolutionary Algorithms for Tackling 2D Packing Problems

  • Javier Espinar
  • Carlos Cotta
  • Antonio J. Fernández Leiva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6686)

Abstract

We consider a 2D packing problem in which a collection of rectangular objects have to be arranged within a larger rectangular area of fixed width, such that its height is minimized. This problem is tackled using evolutionary algorithms that combine permutational decoders and GRASP-based principles. It is shown that this approach can be improved by allowing the user interact with the algorithm, tuning the greediness of the genotype-to-phenotype decoding. Experiments are presented on three different problem instances with sizes ranging from 19 up to 49 objects.

Keywords

Genetic Algorithm Metaheuristic Algorithm Adaptive Search Procedure Processor Allocation Strip Packing Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dyckhoff, H.: A typology of cutting and packing problems. European Journal of Operational Research 44, 145–159 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Hopper, E., Turton, B.: An empirical investigation of meta-heuristic and heuristic algorithms for a 2D packing problem. European Journal of Operational Research 128, 34–57 (2001)CrossRefzbMATHGoogle Scholar
  3. 3.
    Cieliebak, M., Hall, A., Jacob, R., Nunkesser, M.: Sequential vector packing. Theoretical Computer Science 409(3), 351–363 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Hopper, E., Turton, B.: A review of the application of meta-heuristic algorithms to 2d regular and irregular strip packing problems. Artificial Intelligence Review 16, 257–300 (2001)CrossRefzbMATHGoogle Scholar
  5. 5.
    Hart, W.E., Belew, R.K.: Optimizing an arbitrary function is hard for the genetic algorithm. In: Belew, R.K., Booker, L.B. (eds.) Proceedings of the 4th International Conference on Genetic Algorithms, pp. 190–195. Morgan Kaufmann, San Mateo (1991)Google Scholar
  6. 6.
    Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1997)CrossRefGoogle Scholar
  7. 7.
    Davis, L.D.: Handbook of Genetic Algorithms. Van Nostrand Reinhold Computer Library, New York (1991)Google Scholar
  8. 8.
    Cotta, C., Fernández, A.J.: A hybrid GRASP – evolutionary algorithm approach to golomb ruler search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 481–490. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Banzhaf, W.: Interactive evolution. In: Back, T., Fogel, D., Michalewicz, Z. (eds.) Evolutionary Computation. Basic Algorithms and Operators, pp. 228–234. IoP, Bristol (2000)Google Scholar
  10. 10.
    Takagi, H.: Interactive evolutionary computation: Fusion of the capabilities of EC optimization and human evaluation. Proceedings of the IEEE (9), 1275–1296 (2001)Google Scholar
  11. 11.
    Parmee, I.C., Abraham, J.A.R., Machwe, A.: User-centric evolutionary computing: Melding human and machine capability to satisfy multiple criteria. In: Knowles, J., Corne, D., Deb, K., Chair, D.R. (eds.) Multiobjective Problem Solving from Nature. Natural Computing Series, pp. 263–283. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Hwang, I.: An efficient processor allocation algorithm using two-dimensional packing. Journal of Parallel and Distributed Computing 42(1), 75–81 (1997)CrossRefzbMATHGoogle Scholar
  13. 13.
    Burke, E., Kendall, G.: Comparison of meta-heuristic algorithms for clustering rectangles. Computers & Industrial Engineering 37(1-2), 383–386 (1999)CrossRefGoogle Scholar
  14. 14.
    Falkenauer, E.: Genetic Algorithms and Grouping Problems. J. Wiley & Sons, Chichester (1998)zbMATHGoogle Scholar
  15. 15.
    Chazelle, B.: The bottom left bin packing heuristic: an efficient implementation. IEEE Transactions on Computers 32, 697–707 (1983)CrossRefzbMATHGoogle Scholar
  16. 16.
    Burke, E., Kendall, G., Whitwell, G.: A new placement heuristic for the orthogonal stock-cutting problem. Operations Research 52, 697–707 (2004)CrossRefzbMATHGoogle Scholar
  17. 17.
    Alvarez-Valdes, R., Parreno, F., Tamarit, J.: Reactive grasp for the strip-packing problem. Computers & Operations Research 35(4), 1065–1083 (2008)CrossRefzbMATHGoogle Scholar
  18. 18.
    Feo, T., Resende, M.: Greedy randomized adaptive search procedures. Journal of Global Optimization 6, 109–133 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Prais, M., Ribeiro, C.: Reactive GRASP: an application to a matrix decomposition problem in TDMA traffic assignment. INFORMS Journal on Computing 12, 164–176 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Berlin (1992)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Javier Espinar
    • 1
  • Carlos Cotta
    • 1
  • Antonio J. Fernández Leiva
    • 1
  1. 1.Dept. Lenguajes y Ciencias de la Computación, ETSI InformáticaCampus de Teatinos, Universidad de MálagaMálagaSpain

Personalised recommendations