Quantum Information – A Tutorial

  • Mika Hirvensalo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6714)


Information processing, information transmission, and information security are everyday notions of modern society. But what exactly is information? This seems to be quite a hard question. Analogous complication arises in physical sciences when asking what exactly energy is. A naive approach to define information is to define information as a message contained in a string of symbols, but naturally enough, a similar question about the meaning of “message” arises. In this presentation all potential societal and qualitative connotations of information are stripped away and we will restrict only to the quantitative mathematical aspects of information.

20th century witnessed the birth of quantum mechanics, a novel theory establishing a united way to treat two apparently distinct aspects of microsystems: undulatory and corpuscular. Quantum mechanics did not only bring unification, but also severe philosophical problems on the nature of reality.


Quantum Mechanic Quantum System Quantum Information Shannon Entropy Quantum Cryptography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1, 195–200 (1964)Google Scholar
  2. 2.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–179 (1984)Google Scholar
  3. 3.
    Boltzmann, L.: Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. Wiener Berichte 66, 275–370 (1872)zbMATHGoogle Scholar
  4. 4.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Physical Review 47, 777–780 (1935)CrossRefzbMATHGoogle Scholar
  5. 5.
    Holevo, A.S.: Statistical Problems in Quantum Physics. In: Murayama, G., Prokhorov, J.V. (eds.) Proceedings of the Second Japan-USSR Symposium on Probability Theory, pp. 104–109. Springer, Heidelberg (1973)CrossRefGoogle Scholar
  6. 6.
    Mayers, D.: Unconditional security in quantum cryptography. Journal of the ACM 48(3), 351–406 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    von Neumann, J.: Thermodynamik quantummechanischer Gesamheiten. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen 1, 273–291 (1927)Google Scholar
  8. 8.
    Shannon, C.E.: A Mathematical Theory of Communication. Bell System Technical Journal 27, 379–423, 623–656 (1948)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mika Hirvensalo
    • 1
    • 2
  1. 1.Department of MathematicsUniversity of TurkuTurkuFinland
  2. 2.TUCS – Turku Centre for Computer ScienceFinland

Personalised recommendations