Increasing Fault-Tolerance in Cellular Automata-Based Systems

  • Luděk Žaloudek
  • Lukáš Sekanina
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6714)


In the light of emergence of cellular computing, new cellular computing systems based on yet-unknown methods of fabrication need to address the problem of fault tolerance in a way which is not tightly connected to used technology. This may not be possible with existing elaborate fault-tolerant cellular systems so we strive to reach simple solutions. This paper presents a possible solution for increasing fault-tolerance in cellular automata in a form of static module redundancy. Further, a set of experiments evaluating this solution is described, using triple and quintuple module redundancy in the automata with the presence of defects. The results show that the concept works for low intensity of defects for most of our selected benchmarks, however the ability to cope with errors can not be intuitively deduced as indicated on the example of the majority problem.


cellular automata fault tolerance static module redundance TMR cellular computing rule 30 Game of Life Byl’s Loop 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andre, D., Bennett III, F.H., Koza, J.R.: Discovery by genetic programming of a cellular automata rule that is better than any known rule for the majority classification problem. In: Proceedings of the First Annual Conference on Genetic Programming, GECCO 1996, pp. 3–11. MIT Press, Cambridge (1996)Google Scholar
  2. 2.
    Beckett, P., Jennings, A.: Towards nanocomputer architecture. In: Proceedings of the Seventh Asia-Pacific Conference on Computer Systems Architecture, CRPIT 2002, pp. 141–150. Australian Computer Society, Inc., Australia (2002)Google Scholar
  3. 3.
    Bersini, H., Detour, V.: Asynchrony induces stability in cellular automata based models. In: Brooks, R.A., Maes, P. (eds.) Artificial Life IV, pp. 382–387. MIT Press, Cambridge (1994)Google Scholar
  4. 4.
    Byl, J.: Self-reproduction in small cellular automata. Physica D 34(1-2), 295–299 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Durbeck, L., Macias, N.: The cell matrix: An architecture for nanocomputing. Nanotechnology 12(3), 217–230 (2001)CrossRefGoogle Scholar
  6. 6.
    Dysart, T., Kogge, P.: System reliabilities when using triple modular redundancy in quantum-dot cellular automata. In: IEEE International Symposium on Defect and Fault Tolerance of VLSI Systems, DFTVS 2008, pp. 72 –80 (2008)Google Scholar
  7. 7.
    Gardner, M.: The fantastic combinations of john conway’s new solitaire game ’life’. Scientific American 223, 120–123 (1970)CrossRefGoogle Scholar
  8. 8.
    Garzon, M.: Models of massive parallelism: analysis of cellular automata and neural networks. Springer, London (1995)CrossRefzbMATHGoogle Scholar
  9. 9.
    Lala, P.K. (ed.): Self-checking and fault-tolerant digital design. Morgan Kaufmann Publishers Inc., San Francisco (2001)Google Scholar
  10. 10.
    Li, W.: Phenomenology of nonlocal cellular automata. Journal of Statistical Physics 68, 829–882 (1992), doi:10.1007/BF01048877MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Mange, D., Sipper, M., Stauffer, A., Tempesti, G.: Towards Robust Integrated Circuits: The Embryonics Approach. Proceedings of IEEE 88(4), 516–541 (2000)CrossRefGoogle Scholar
  12. 12.
    Peper, F., Lee, J., Abo, F., Isokawa, T., Adachi, S., Matsui, N., Mashiko, S.: Fault-tolerance in nanocomputers: A cellular array approach. IEEE Transactions on Nanotechnology 3(1), 187–201 (2004)CrossRefzbMATHGoogle Scholar
  13. 13.
    Sekanina, L., Komenda, T.: Global control in polymorphic celular automata. Journal of Cellular Automata 6(4), 1–21 (2011)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Sipper, M.: The emergence of cellular computing. Computer 32(7), 18–26 (1999)CrossRefGoogle Scholar
  15. 15.
    Sipper, M.: Evolution of Parallel Cellular Machines: The Cellular Programming Approach. LNCS, vol. 1194. Springer, Heidelberg (1997)Google Scholar
  16. 16.
    Toffoli, T., Margolus, N.: Cellular Automata Machines: A New Environment for Modeling. MIT Press, Cambridge (1987)zbMATHGoogle Scholar
  17. 17.
    Wolfram, S.: Cellular Automata and Complexity: Collected Papers. Addison-Wesley, Reading (1994)zbMATHGoogle Scholar
  18. 18.
    Wolfram, S.: A New Kind of Science. Wolfram Media, Inc., Champaign (2002)zbMATHGoogle Scholar
  19. 19.
    Zaloudek, L., Sekanina, L., Simek, V.: Accelerating Cellular Automata Evolution on Graphics Processing Units. International Journal on Advances in Software 3(1), 294–303 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Luděk Žaloudek
    • 1
  • Lukáš Sekanina
    • 1
  1. 1.Faculty of Information TechnologyBrno University of TechnologyBrnoCzech Republic

Personalised recommendations