Advertisement

BFS Solution for Disjoint Paths in P Systems

  • Radu Nicolescu
  • Huiling Wu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6714)

Abstract

This paper continues the research on determining a maximum cardinality set of edge- and node-disjoint paths between a source cell and a target cell in P systems. With reference to the previously proposed solution [3], based on depth-first search (DFS), we propose a faster solution, based on breadth-first search (BFS), which leverages the parallel and distributed characteristics of P systems. The runtime complexity shows that, our BFS-based solution performs better than the DFS-based solution, in terms of P steps.

Keywords

P systems edge-disjoint paths node-disjoint paths depth-first search breadth-first search network flow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms, 3rd edn. The MIT Press, Cambridge (2009)zbMATHGoogle Scholar
  2. 2.
    Dinic, E.A.: Algorithm for solution of a problem of maximum flow in a network with power estimation. Soviet Math. Dokl. 11, 1277–1280 (1970)Google Scholar
  3. 3.
    Dinneen, M.J., Kim, Y.B., Nicolescu, R.: Edge- and node-disjoint paths in P systems. Electronic Proceedings in Theoretical Computer Science 40, 121–141 (2010)CrossRefGoogle Scholar
  4. 4.
    Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM 19(2), 248–264 (1972)CrossRefzbMATHGoogle Scholar
  5. 5.
    Ford Jr., L.R., Fulkerson, D.R.: Maximal flow through a network. Canadian Journal of Mathematics 8, 399–404 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum flow problem. Journal of the ACM 35(4), 921–940 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ionescu, M., Sburlan, D.: On P systems with promoters/inhibitors. Journal of Universal Computer Science 10(5), 581–599 (2004)MathSciNetGoogle Scholar
  8. 8.
    Kozen, D.C.: The Design and Analysis of Algorithms. Springer, New York (1991)zbMATHGoogle Scholar
  9. 9.
    Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco (1996)zbMATHGoogle Scholar
  10. 10.
    Martín-Vide, C., Păun, G., Pazos, J., Rodríguez-Patón, A.: Tissue P systems. Theor. Comput. Sci. 296(2), 295–326 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Nicolescu, R., Dinneen, M.J., Kim, Y.B.: Structured modelling with hyperdag P systems: Part A. Report CDMTCS-342, Centre for Discrete Mathematics and Theoretical Computer Science, The University of Auckland, Auckland, New Zealand (December 2008), http://www.cs.auckland.ac.nz/CDMTCS/researchreports/342hyperdagA.pdf
  12. 12.
    Nicolescu, R., Dinneen, M.J., Kim, Y.B.: Structured modelling with hyperdag P systems: Part B. Report CDMTCS-373, Centre for Discrete Mathematics and Theoretical Computer Science, The University of Auckland, Auckland, New Zealand (October 2009), http://www.cs.auckland.ac.nz/CDMTCS//researchreports/373hP_B.pdf
  13. 13.
    Nicolescu, R., Dinneen, M.J., Kim, Y.B.: Towards structured modelling with hyperdag P systems. International Journal of Computers, Communications and Control 2, 209–222 (2010)Google Scholar
  14. 14.
    Nicolescu, R., Wu, H.: BFS solution for disjoint paths in P systems. Report CDMTCS-399, Centre for Discrete Mathematics and Theoretical Computer Science, The University of Auckland, Auckland, New Zealand (March 2011), http://www.cs.auckland.ac.nz/CDMTCS//researchreports/399radu.pdf
  15. 15.
    Păun, G.: Membrane Computing: An Introduction. Springer-Verlag New York, Inc., Secaucus (2002)CrossRefzbMATHGoogle Scholar
  16. 16.
    Păun, G.: Introduction to membrane computing. In: Ciobanu, G., Pérez-Jiménez, M.J., Păun, G. (eds.) Applications of Membrane Computing. Natural Computing Series, pp. 1–42. Springer, Heidelberg (2006)Google Scholar
  17. 17.
    Păun, G., Centre, T., Science, C.: Computing with membranes. Journal of Computer and System Sciences 61, 108–143 (1998)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Seo, D., Thottethodi, M.: Disjoint-path routing: Efficient communication for streaming applications. In: IPDPS, pp. 1–12. IEEE, Los Alamitos (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Radu Nicolescu
    • 1
  • Huiling Wu
    • 1
  1. 1.Department of Computer ScienceUniversity of AucklandAucklandNew Zealand

Personalised recommendations