Skip to main content

A Formal Approach to Unconditional Security Proofs for Quantum Key Distribution

  • Conference paper
  • 677 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6714))

Abstract

We present an approach to automate Shor-Preskill style unconditional security proof of QKDs. In Shor-Preskill’s proof, the target QKD, BB84, is transformed into another QKD based on an entanglement distillation protocol (EDP), which is more feasible for direct analysis. We formalized heir method as program transformation in a quantum programming language, QPL. The transform is defined as rewriting rules which are sound with respect to the security in the semantics of QPL. We proved that rewriting always terminates for any program and that the normal form is unique under appropriate conditions. By applying the rewriting rules to the program representing BB84, we can obtain the corresponding EDP-based protocol automatically. We finally proved the security of the obtained EDP-based protocol formally in the quantum Hoare logic, which is a system for formal verification of quantum programs. We show also that this method can be applied to B92 by a simple modification.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: Public-key distribution and coin tossing. In: IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179 (1984)

    Google Scholar 

  2. Ekert, A.K.: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bennet, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Inoue, K., Waks, E., Yamamoto, Y.: Differential phase shift quantum key distribution. Phys. Rev. Lett. 89(3), 037902 (2002)

    Article  Google Scholar 

  5. Stucki, D., Brunner, N., Gisin, N., Scarani, V., Zbinden, H.: Fast and simple one-way quantum key distribution. Appl. Phys. Lett. 87(19), 194108–194108–3 (2005)

    Article  Google Scholar 

  6. Nagy, M., Akl, S.G.: Entanglement verification with an application to quantum key distribution protocols. Parallel Processing Letters, 227–237 (2010)

    Google Scholar 

  7. Mayers, D.: Unconditional security in quantum cryptography. J. ACM 48, 351–406 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lo, H.-K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Phys. Rev. Lett. 283(5410), 2050–2056 (1999)

    Google Scholar 

  9. Shor, P.W., Preskill, J.: Simple proof of security of the bb84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    Article  Google Scholar 

  10. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54(2), 1098–1105 (1996)

    Article  Google Scholar 

  11. Tamaki, K., Koashi, M., Imoto, N.: Unconditionally secure key distribution based on two nonorthogonal states. Phys. Rev. Lett. 90(16), 167904 (2003)

    Article  Google Scholar 

  12. Hwang, W.-Y., Wang, X.-B., Matsumoto, K., Kim, J., Lee, H.-W.: Shor-preskill-type security proof for quantum key distribution without public announcement of bases. Phys. Rev. A 67(1), 012302 (2003)

    Article  Google Scholar 

  13. Blanchet, B., Jaggard, A.D., Scedrov, A., Tsay, J.-K.: Computationally sound mechanized proofs for basic and public-key kerberos. In: Proceedings of the 2008 ACM Symposium on Information, Computer and Communications Security, ASIACCS 2008, pp. 87–99. ACM, New York (2008)

    Chapter  Google Scholar 

  14. Neuman, C., Yu, T., Hatman, S., Raeburn, K.: The kerberos network authentication service (v5) (July 2005), http://www.ietf.org/rfc/rfc4120

  15. Selinger, P.: Towards a quantum programming language. Mathematical Structures in Computer Science 14, 527–586 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kakutani, Y.: A logic for formal verification of quantum programs. In: Datta, A. (ed.) ASIAN 2009. LNCS, vol. 5913, pp. 79–93. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  17. Kubota, T.: Formalization and Automation of Unconditional Security Proof of QKD. Master thesis, the University of Tokyo (February 2011)

    Google Scholar 

  18. Nagarajan, R., Papanikolaou, N., Bowen, G., Gay, S.: An Automated Analysis of the Security of Quantum Key Distribution. ArXiv Computer Science e-prints (February 2005)

    Google Scholar 

  19. http://www.prismmodelchecker.org/

  20. Lo, H.-K.: Proof of unconditional security of six-state quantum key distribution scheme, http://arxiv.org/cits/quant-ph/0102138

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kubota, T., Kakutani, Y., Kato, G., Kawano, Y. (2011). A Formal Approach to Unconditional Security Proofs for Quantum Key Distribution. In: Calude, C.S., Kari, J., Petre, I., Rozenberg, G. (eds) Unconventional Computation. UC 2011. Lecture Notes in Computer Science, vol 6714. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21341-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21341-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21340-3

  • Online ISBN: 978-3-642-21341-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics