Skip to main content

Geometrical Accumulations and Computably Enumerable Real Numbers

  • Conference paper
Book cover Unconventional Computation (UC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6714))

Included in the following conference series:

Abstract

Abstract geometrical computation involves drawing colored line segments (traces of signals) according to rules: signals with similar color are parallel and when they intersect, they are replaced according to their colors. Time and space are continuous and accumulations can be devised to unlimitedly accelerate a computation and provide, in a finite duration, exact analog values as limits.

In the present paper, we show that starting with rational numbers for coordinates and speeds, the time of any accumulation is a c.e. (computably enumerable) real number and moreover, there is a signal machine and an initial configuration that accumulates at any c.e. time. Similarly, we show that the spatial positions of accumulations are exactly the d-c.e. (difference of computably enumerable) numbers. Moreover, there is a signal machine that can accumulate at any c.e. time or d-c.e. position.

http://www.univ-orleans.fr/lifo/Members/Jerome.Durand-Lose ,

Jerome.Durand-Lose@univ-orleans.fr

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamatzky, A. (ed.): Collision based computing. Springer, London (2002)

    MATH  Google Scholar 

  • Adamatzky, A., Durand-Lose, J.: Collision computing. In: Corne, D. (ed.) Handbook of Natural Computing: Theory, Experiments, and Applications, Part II. Springer, Heidelberg (2010)

    Google Scholar 

  • Ambos-Spies, K., Weihrauch, K., Zheng, X.: Weakly computable real numbers. J. Complexity 16(4), 676–690 (2000), doi:10.1006/jcom.2000.0561

    Article  MathSciNet  MATH  Google Scholar 

  • Andréka, H., Németi, I., Németi, P.: General relativistic hypercomputing and foundation of mathematics. Nat. Comput. 8(3), 499–516 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bull. Amer. Math. Soc. 21(1), 1–46 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Duchier, D., Durand-Lose, J., Senot, M.: Fractal parallelism: Solving SAT in bounded space and time. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010. LNCS, vol. 6506, pp. 279–290. Springer, Heidelberg (2010), doi:10.1007/978-3-642-17517-6_26

    Chapter  Google Scholar 

  • Durand-Lose, J.: Abstract geometrical computation 1: Embedding black hole computations with rational numbers. Fund. Inf. 74(4), 491–510 (2006a)

    MathSciNet  MATH  Google Scholar 

  • Durand-Lose, J.: Forecasting black holes in abstract geometrical computation is highly unpredictable. In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 644–653. Springer, Heidelberg (2006b), doi:10.1007/11750321_61

    Chapter  Google Scholar 

  • Durand-Lose, J.: Abstract geometrical computation and the linear blum, shub and smale model. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 238–247. Springer, Heidelberg (2007), doi:10.1007/978-3-540-73001-9_25

    Chapter  Google Scholar 

  • Durand-Lose, J.: Abstract geometrical computation with accumulations: Beyond the Blum, Shub and Smale model. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) Logic and Theory of Algorithms, 4th Conf. Computability in Europe (CiE 2008) (abstracts and extended abstracts of unpublished papers), pp. 107–116. University of Athens, Athens (2008a)

    Google Scholar 

  • Durand-Lose, J.: The signal point of view: from cellular automata to signal machines. In: Durand, B. (ed.) Journées Automates Cellulaires (JAC 2008), pp. 238–249 (2008b)

    Google Scholar 

  • Durand-Lose, J.: Abstract geometrical computation 3: Black holes for classical and analog computing. Nat. Comput. 8(3), 455–472 (2009a), doi:10.1007/s11047-009-9117-0

    Article  MathSciNet  MATH  Google Scholar 

  • Durand-Lose, J.: Abstract geometrical computation and computable analysis. In: Costa, J.F., Dershowitz, N. (eds.) UC 2009. LNCS, vol. 5715, pp. 158–167. Springer, Heidelberg (2009b), doi:10.1007/978-3-642-03745-0_20

    Chapter  Google Scholar 

  • Durand-Lose, J.: The coordinates of isolated accumulations [includes] computable real numbers. In: Ferreira, F., Guerra, H., Mayordomo, E., Rasga, J. (eds.) Programs, Proofs, Processes, 6th Int. Conf. Computability in Europe (CiE 2010) (abstracts and extended abstracts of unpublished papers), pp. 158–167. CMATI, U. Azores (2010a)

    Google Scholar 

  • Durand-Lose, J.: Abstract geometrical computation 5: embedding computable analysis. Nat. Comput (2010b); Special issue on Unconv. Comp. 2009, doi:10.1007/s11047-010-9229-6

    Google Scholar 

  • Etesi, G., Németi, I.: Non-Turing computations via Malament-Hogarth space-times. Int. J. Theor. Phys. 41(2), 341–370 (2002), http://www.gr-qc/0104023

    Article  MathSciNet  MATH  Google Scholar 

  • Hagiya, M.: Discrete state transition systems on continuous space-time: A theoretical model for amorphous computing. In: Calude, C., Dinneen, M.J., Paun, G., Pérez-Jiménez, M.J., Rozenberg, G. (eds.) UC 2005. LNCS, vol. 3699, pp. 117–129. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  • Hogarth, M.L.: Deciding arithmetic using SAD computers. Brit. J. Philos. Sci. 55, 681–691 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Jacopini, G., Sontacchi, G.: Reversible parallel computation: an evolving space-model. Theoret. Comp. Sci. 73(1), 1–46 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Lloyd, S., Ng, Y.J.: Black hole computers. Scientific American 291(5), 31–39 (2004)

    Article  Google Scholar 

  • Takeuti, I.: Transition systems over continuous time-space. Electr. Notes Theor. Comput. Sci. 120, 173–186 (2005)

    Article  MathSciNet  Google Scholar 

  • Weihrauch, K.: Introduction to computable analysis. Texts in Theoretical computer science. Springer, Berlin (2000)

    MATH  Google Scholar 

  • Zheng, X.: A computability theory of real numbers. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 584–594. Springer, Heidelberg (2006) ISBN 3-540-35466-2, doi:10.1007/11780342_60

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Durand-Lose, J. (2011). Geometrical Accumulations and Computably Enumerable Real Numbers. In: Calude, C.S., Kari, J., Petre, I., Rozenberg, G. (eds) Unconventional Computation. UC 2011. Lecture Notes in Computer Science, vol 6714. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21341-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21341-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21340-3

  • Online ISBN: 978-3-642-21341-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics